login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A087798 a(n) = 9*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 9. 5
2, 9, 83, 756, 6887, 62739, 571538, 5206581, 47430767, 432083484, 3936182123, 35857722591, 326655685442, 2975758891569, 27108485709563, 246952130277636, 2249677658208287, 20494051054152219, 186696137145578258 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n+1)/a(n) converges to (9 + sqrt(85))/2.

For more information about this type of recurrence follow the Khovanova link and see A054413 and A086902. - Johannes W. Meijer, Jun 12 2010

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Tanya Khovanova, Recursive Sequences

Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)

Index entries for linear recurrences with constant coefficients, signature (9,1).

FORMULA

a(n) = ((9+sqrt(85))/2)^n + ((9-sqrt(85))/2)^n.

G.f.: (2-9*x)/(1-9*x-x^2). - Philippe Deléham, Nov 02 2008

From Johannes W. Meijer, Jun 12 2010: (Start)

a(2n+1) = 9*A097840(n), a(2n) = A099373(n).

a(3n+1) = A041150(5n), a(3n+2) = A041150(5n+3), a(3n+3) = 2*A041150(5n+4).

Limit(a(n+k)/a(k), k=infinity) = (A087798(n) + A099371(n)*sqrt(85))/2.

Limit(A087798(n)/A099371(n), n=infinity) = sqrt(85).

(End)

EXAMPLE

a(4) = 9*a(3) + a(2) = 9*756 + 83 = 6887.

MATHEMATICA

RecurrenceTable[{a[0] == 2, a[1] == 9, a[n] == 9 a[n-1] + a[n-2]}, a, {n, 30}] (* Vincenzo Librandi, Sep 19 2016 *)

PROG

(MAGMA) I:=[2, 9]; [n le 2 select I[n] else 9*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 19 2016

CROSSREFS

Cf. A014511.

Sequence in context: A123570 A006040 A067309 * A113146 A296581 A069234

Adjacent sequences:  A087795 A087796 A087797 * A087799 A087800 A087801

KEYWORD

easy,nonn

AUTHOR

Nikolay V. Kosinov, Dmitry V. Poljakov (kosinov(AT)unitron.com.ua), Oct 10 2003

EXTENSIONS

More terms from Ray Chandler, Nov 06 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 18:50 EDT 2018. Contains 315270 sequences. (Running on oeis4.)