login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A087798 a(n) = 9*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 9. 5
2, 9, 83, 756, 6887, 62739, 571538, 5206581, 47430767, 432083484, 3936182123, 35857722591, 326655685442, 2975758891569, 27108485709563, 246952130277636, 2249677658208287, 20494051054152219, 186696137145578258 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n+1)/a(n) converges to (9 + sqrt(85))/2.

For more information about this type of recurrence follow the Khovanova link and see A054413 and A086902. - Johannes W. Meijer, Jun 12 2010

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Tanya Khovanova, Recursive Sequences

Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)

Index entries for linear recurrences with constant coefficients, signature (9,1).

FORMULA

a(n) = ((9+sqrt(85))/2)^n + ((9-sqrt(85))/2)^n.

G.f.: (2-9*x)/(1-9*x-x^2). - Philippe Deléham, Nov 02 2008

From Johannes W. Meijer, Jun 12 2010: (Start)

a(2n+1) = 9*A097840(n), a(2n) = A099373(n).

a(3n+1) = A041150(5n), a(3n+2) = A041150(5n+3), a(3n+3) = 2*A041150(5n+4).

Limit(a(n+k)/a(k), k=infinity) = (A087798(n) + A099371(n)*sqrt(85))/2.

Limit(A087798(n)/A099371(n), n=infinity) = sqrt(85).

(End)

EXAMPLE

a(4) = 9*a(3) + a(2) = 9*756 + 83 = 6887.

MATHEMATICA

RecurrenceTable[{a[0] == 2, a[1] == 9, a[n] == 9 a[n-1] + a[n-2]}, a, {n, 30}] (* Vincenzo Librandi, Sep 19 2016 *)

PROG

(MAGMA) I:=[2, 9]; [n le 2 select I[n] else 9*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 19 2016

CROSSREFS

Cf. A014511.

Sequence in context: A123570 A006040 A067309 * A113146 A069234 A086929

Adjacent sequences:  A087795 A087796 A087797 * A087799 A087800 A087801

KEYWORD

easy,nonn

AUTHOR

Nikolay V. Kosinov, Dmitry V. Poljakov (kosinov(AT)unitron.com.ua), Oct 10 2003

EXTENSIONS

More terms from Ray Chandler, Nov 06 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 22 12:02 EDT 2017. Contains 289669 sequences.