login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099373 Twice Chebyshev's polynomials of the first kind, T(n,x), evaluated at 83/2. 3
2, 83, 6887, 571538, 47430767, 3936182123, 326655685442, 27108485709563, 2249677658208287, 186696137145578258, 15493529705424787127, 1285776269413111753283, 106703936831582850735362 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Used in A099372.

The proper and improper nonnegative solutions of the Pell equation x(n)^2 - 85*y(n)^2 = +4 are x(n) = a(n) and y(n) = 9*A097839(n), n >= 0. - Wolfdieter Lang, Jul 01 2013

LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..520

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (83,-1).

FORMULA

a(n) = 83*a(n-1) - a(n-2), n >= 1; a(-1) = 83, a(0) = 2.

a(n) = S(n, 83) - S(n-2, 83) = 2*T(n, 83/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 83)= A097839(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, case. See A049310 and A053120.

G.f.: (2-83*x)/(1-83*x+x^2).

a(n) = ap^n + am^n, with ap := (83+9*sqrt(85))/2 and am := (83-9*sqrt(85))/2.

EXAMPLE

Pell equation: n=0: 2^2 - 85*0^2 = +4 (improper), n=1: 83^2 - 85*(9*1)^2 = +4, n=2: 6887^2 - 85*(9*83)^2 = +4. - Wolfdieter Lang, Jul 01 2013

CROSSREFS

Sequence in context: A266201 A225807 A232770 * A169601 A205643 A215263

Adjacent sequences:  A099370 A099371 A099372 * A099374 A099375 A099376

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Oct 18 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 26 05:18 EDT 2017. Contains 287074 sequences.