This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A099373 Twice Chebyshev's polynomials of the first kind, T(n,x), evaluated at 83/2. 3
 2, 83, 6887, 571538, 47430767, 3936182123, 326655685442, 27108485709563, 2249677658208287, 186696137145578258, 15493529705424787127, 1285776269413111753283, 106703936831582850735362 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Used in A099372. The proper and improper nonnegative solutions of the Pell equation x(n)^2 - 85*y(n)^2 = +4 are x(n) = a(n) and y(n) = 9*A097839(n), n >= 0. - Wolfdieter Lang, Jul 01 2013 LINKS Indranil Ghosh, Table of n, a(n) for n = 0..520 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (83,-1). FORMULA a(n) = 83*a(n-1) - a(n-2), n >= 1; a(-1) = 83, a(0) = 2. a(n) = S(n, 83) - S(n-2, 83) = 2*T(n, 83/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 83)= A097839(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, case. See A049310 and A053120. G.f.: (2-83*x)/(1-83*x+x^2). a(n) = ap^n + am^n, with ap := (83+9*sqrt(85))/2 and am := (83-9*sqrt(85))/2. EXAMPLE Pell equation: n=0: 2^2 - 85*0^2 = +4 (improper), n=1: 83^2 - 85*(9*1)^2 = +4, n=2: 6887^2 - 85*(9*83)^2 = +4. - Wolfdieter Lang, Jul 01 2013 CROSSREFS Sequence in context: A225807 A232770 A317724 * A169601 A205643 A215263 Adjacent sequences:  A099370 A099371 A099372 * A099374 A099375 A099376 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Oct 18 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 11:26 EDT 2019. Contains 328216 sequences. (Running on oeis4.)