OFFSET
0,3
COMMENTS
The limit a(n) / (5^(n/4) * phi^(n*(n+1)) / (2*Pi*n)^(n/2)) does not exist but oscillates between 2 attractors. The value is dependent on the fractional part of n/(sqrt(5)*phi), see graph. - Vaclav Kotesovec, Jan 28 2019
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..71
Vaclav Kotesovec, Graph - the asymptotic ratio
FORMULA
a(n)^(1/n) ~ 5^(1/4) * phi^(n+1) / sqrt(2*Pi*n), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jan 27 2019
log(a(n)) ~ n*(n*v + w - log(n))/2 with v = 2*log((1 + sqrt(5))/2) and w = log((35 + 15*sqrt(5))/(8*Pi^2))/2, preceding formula recast. - Peter Luschny, Jan 28 2019
MATHEMATICA
Table[Sum[Binomial[n-k, k]^n, {k, 0, n/2}], {n, 0, 15}] (* Vaclav Kotesovec, Jan 27 2019 *)
PROG
(PARI) {a(n) = sum(k=0, n\2, binomial(n-k, k)^n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 27 2019
STATUS
approved