login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323772
Expansion of e.g.f. 1 - LambertW(-x/(1 - x))*(2 + LambertW(-x/(1 - x)))/2.
2
1, 1, 3, 15, 112, 1165, 15966, 275149, 5743032, 141020793, 3984082570, 127298787121, 4538547029556, 178610366328277, 7690287949961358, 359592884584517445, 18146340023779538416, 982966789391874234865, 56889414275458791370770, 3503393307156206473624153, 228738978280736413137020460
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} binomial(n-1,k-1)*A000272(k)*n!/k!.
a(n) ~ (1 + exp(-1))^(n + 3/2) * n^(n-2). - Vaclav Kotesovec, Jan 27 2019
MAPLE
seq(n!*coeff(series(1-LambertW(-x/(1-x))*(2+LambertW(-x/(1-x)))/2, x=0, 21), x, n), n=0..20); # Paolo P. Lava, Jan 29 2019
MATHEMATICA
nmax = 20; CoefficientList[Series[1 - LambertW[-x/(1 - x)] (2 + LambertW[-x/(1 - x)])/2, {x, 0, nmax}], x] Range[0, nmax]!
Join[{1}, Table[Sum[Binomial[n - 1, k - 1] k^(k - 2) n!/k!, {k, n}], {n, 20}]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 27 2019
STATUS
approved