The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A323775 a(n) = Sum_{k = 1...n} k^(2^(n - k)). 2
 1, 3, 8, 30, 359, 72385, 4338080222, 18448597098193762732, 340282370354622283774333836315916425069, 115792089237316207213755562747271079374483128445080168204415615259394085515423 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Number of ways to choose a constant integer partition of each part of a constant integer partition of 2^(n - 1). LINKS Table of n, a(n) for n=1..10. EXAMPLE The a(1) = 1 through a(4) = 30 twice-partitions: (1) (2) (4) (8) (11) (22) (44) (1)(1) (1111) (2222) (2)(2) (4)(4) (11)(2) (22)(4) (2)(11) (4)(22) (11)(11) (22)(22) (1)(1)(1)(1) (1111)(4) (4)(1111) (11111111) (1111)(22) (22)(1111) (1111)(1111) (2)(2)(2)(2) (11)(2)(2)(2) (2)(11)(2)(2) (2)(2)(11)(2) (2)(2)(2)(11) (11)(11)(2)(2) (11)(2)(11)(2) (11)(2)(2)(11) (2)(11)(11)(2) (2)(11)(2)(11) (2)(2)(11)(11) (11)(11)(11)(2) (11)(11)(2)(11) (11)(2)(11)(11) (2)(11)(11)(11) (11)(11)(11)(11) (1)(1)(1)(1)(1)(1)(1)(1) MATHEMATICA Table[Sum[k^2^(n-k), {k, n}], {n, 12}] CROSSREFS Cf. A000123, A001970, A002577, A006171, A279787, A279789, A305551, A306017, A319056, A323766, A323774, A323776. Sequence in context: A298456 A145776 A066165 * A360605 A119838 A148889 Adjacent sequences: A323772 A323773 A323774 * A323776 A323777 A323778 KEYWORD nonn AUTHOR Gus Wiseman, Jan 27 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 24 00:49 EST 2024. Contains 370288 sequences. (Running on oeis4.)