login
A305551
Number of partitions of partitions of n where all partitions have the same sum.
54
1, 1, 3, 4, 9, 8, 22, 16, 43, 41, 77, 57, 201, 102, 264, 282, 564, 298, 1175, 491, 1878, 1509, 2611, 1256, 7872, 2421, 7602, 8026, 16304, 4566, 38434, 6843, 48308, 41078, 56582, 28228, 221115, 21638, 146331, 208142, 453017, 44584, 844773, 63262, 1034193, 1296708
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{d|n} binomial(A000041(n/d) + d - 1, d).
EXAMPLE
The a(4) = 9 partitions of partitions where all partitions have the same sum:
(4), (31), (22), (211), (1111),
(2)(2), (2)(11), (11)(11),
(1)(1)(1)(1).
MATHEMATICA
Table[Sum[Binomial[PartitionsP[n/k]+k-1, k], {k, Divisors[n]}], {n, 60}]
PROG
(PARI) a(n)={if(n<1, n==0, sumdiv(n, d, binomial(numbpart(n/d) + d - 1, d)))} \\ Andrew Howroyd, Jun 22 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 20 2018
STATUS
approved