|
|
A305551
|
|
Number of partitions of partitions of n where all partitions have the same sum.
|
|
42
|
|
|
1, 1, 3, 4, 9, 8, 22, 16, 43, 41, 77, 57, 201, 102, 264, 282, 564, 298, 1175, 491, 1878, 1509, 2611, 1256, 7872, 2421, 7602, 8026, 16304, 4566, 38434, 6843, 48308, 41078, 56582, 28228, 221115, 21638, 146331, 208142, 453017, 44584, 844773, 63262, 1034193, 1296708
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{d|n} binomial(A000041(n/d) + d - 1, d).
|
|
EXAMPLE
|
The a(4) = 9 partitions of partitions where all partitions have the same sum:
(4), (31), (22), (211), (1111),
(2)(2), (2)(11), (11)(11),
(1)(1)(1)(1).
|
|
MATHEMATICA
|
Table[Sum[Binomial[PartitionsP[n/k]+k-1, k], {k, Divisors[n]}], {n, 60}]
|
|
PROG
|
(PARI) a(n)={if(n<1, n==0, sumdiv(n, d, binomial(numbpart(n/d) + d - 1, d)))} \\ Andrew Howroyd, Jun 22 2018
|
|
CROSSREFS
|
Cf. A000005, A001970, A001315, A007716, A038041, A055887, A063834, A271619, A289078, A298422, A306017.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|