login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A271619
Twice partitioned numbers where the first partition is strict.
57
1, 1, 2, 5, 8, 18, 34, 65, 109, 223, 386, 698, 1241, 2180, 3804, 6788, 11390, 19572, 34063, 56826, 96748, 163511, 272898, 452155, 755928, 1244732, 2054710, 3382147, 5534696, 8992209, 14733292, 23763685, 38430071, 62139578, 99735806, 160183001, 256682598
OFFSET
0,3
COMMENTS
Number of sequences of integer partitions of the parts of some strict partition of n.
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1, g(n) = -A000041(n). - Seiichi Manyama, Nov 15 2018
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..5000 from Alois P. Heinz)
FORMULA
G.f.: Product_{i>=1} (1 + A000041(i) * x^i).
EXAMPLE
a(6)=34: {(6);(5)(1),(51);(4)(2),(42);(4)(11),(41)(1),(411);(33);(3)(2)(1),(31)(2),(32)(1),(321);(3)(11)(1),(31)(11),(311)(1),(3111);(22)(2),(222);(21)(2)(1),(22)(11),(211)(2),(221)(1),(2211);(21)(11)(1),(111)(2)(1),(211)(11),(1111)(2),(2111)(1),(21111);(111)(11)(1),(1111)(11),(11111)(1),(111111)}
MAPLE
b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, 1, b(n, i-1) +`if`(i>n, 0,
b(n-i, i-1)*combinat[numbpart](i))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..50); # Alois P. Heinz, Apr 11 2016
MATHEMATICA
With[{n = 50}, CoefficientList[Series[Product[(1 + PartitionsP[i] x^i), {i, 1, n}], {x, 0, n}], x]]
CROSSREFS
Cf. A000009, A000041, A063834 (twice partitioned numbers), A270995, A279785, A327552, A327607.
Sequence in context: A304966 A354539 A152006 * A197211 A256723 A032063
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 10 2016
STATUS
approved