OFFSET
0,3
COMMENTS
Number of sequences of integer partitions of the parts of some strict partition of n.
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1, g(n) = -A000041(n). - Seiichi Manyama, Nov 15 2018
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..5000 from Alois P. Heinz)
FORMULA
G.f.: Product_{i>=1} (1 + A000041(i) * x^i).
EXAMPLE
a(6)=34: {(6);(5)(1),(51);(4)(2),(42);(4)(11),(41)(1),(411);(33);(3)(2)(1),(31)(2),(32)(1),(321);(3)(11)(1),(31)(11),(311)(1),(3111);(22)(2),(222);(21)(2)(1),(22)(11),(211)(2),(221)(1),(2211);(21)(11)(1),(111)(2)(1),(211)(11),(1111)(2),(2111)(1),(21111);(111)(11)(1),(1111)(11),(11111)(1),(111111)}
MAPLE
b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, 1, b(n, i-1) +`if`(i>n, 0,
b(n-i, i-1)*combinat[numbpart](i))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..50); # Alois P. Heinz, Apr 11 2016
MATHEMATICA
With[{n = 50}, CoefficientList[Series[Product[(1 + PartitionsP[i] x^i), {i, 1, n}], {x, 0, n}], x]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 10 2016
STATUS
approved