The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A304966 Expansion of Product_{k>=1} 1/(1 - x^k)^(p(k)-1), where p(k) = number of partitions of k (A000041). 9
 1, 0, 1, 2, 5, 8, 18, 30, 61, 107, 203, 358, 663, 1162, 2093, 3666, 6481, 11258, 19652, 33874, 58464, 100046, 171032, 290563, 492745, 831393, 1399655, 2346707, 3924873, 6541472, 10875575, 18025629, 29804125, 49143254, 80841455, 132651457, 217179366, 354745107, 578215807 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Euler transform of A000065. Convolution of the sequences A001970 and A010815. LINKS Table of n, a(n) for n=0..38. N. J. A. Sloane, Transforms Index entries for sequences related to partitions FORMULA G.f.: Product_{k>=1} 1/(1 - x^k)^A000065(k). MAPLE with(combinat): with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d* numbpart(d)-d, d=divisors(j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, May 22 2018 MATHEMATICA nmax = 38; CoefficientList[Series[Product[1/(1 - x^k)^(PartitionsP[k] - 1), {k, 1, nmax}], {x, 0, nmax}], x] a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (PartitionsP[d] - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 38}] CROSSREFS Cf. A000041, A000065, A000219, A001383, A001970, A010815, A052847. Sequence in context: A039658 A063675 A000943 * A354539 A152006 A271619 Adjacent sequences: A304963 A304964 A304965 * A304967 A304968 A304969 KEYWORD nonn AUTHOR Ilya Gutkovskiy, May 22 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 06:02 EST 2023. Contains 367685 sequences. (Running on oeis4.)