login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A304966 Expansion of Product_{k>=1} 1/(1 - x^k)^(p(k)-1), where p(k) = number of partitions of k (A000041). 9
1, 0, 1, 2, 5, 8, 18, 30, 61, 107, 203, 358, 663, 1162, 2093, 3666, 6481, 11258, 19652, 33874, 58464, 100046, 171032, 290563, 492745, 831393, 1399655, 2346707, 3924873, 6541472, 10875575, 18025629, 29804125, 49143254, 80841455, 132651457, 217179366, 354745107, 578215807 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Euler transform of A000065.
Convolution of the sequences A001970 and A010815.
LINKS
N. J. A. Sloane, Transforms
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^k)^A000065(k).
MAPLE
with(combinat): with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
numbpart(d)-d, d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, May 22 2018
MATHEMATICA
nmax = 38; CoefficientList[Series[Product[1/(1 - x^k)^(PartitionsP[k] - 1), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (PartitionsP[d] - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 38}]
CROSSREFS
Sequence in context: A039658 A063675 A000943 * A354539 A152006 A271619
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 22 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 06:02 EST 2023. Contains 367685 sequences. (Running on oeis4.)