login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000943
Number of combinatorial types of simplicial n-dimensional polytopes with n+3 nodes.
(Formerly M1352 N0519)
9
1, 2, 5, 8, 18, 29, 57, 96, 183, 318, 604, 1080, 2047, 3762, 7145, 13354, 25471, 48164, 92193, 175780, 337581, 647313, 1246849, 2400828, 4636375, 8956045, 17334785, 33570800, 65108045, 126355319, 245492226, 477284164, 928772631, 1808538336
OFFSET
1,2
REFERENCES
B. Grünbaum, Convex Polytopes. Wiley, NY, 1967, p. 424.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
MAPLE
with(numtheory); n := 50; for d from 2 to n do C(d) := 0; for h from 1 to d+3 do if (h mod 2 = 1) and (d+3 mod h = 0) then C(d) := C(d) + phi(h) * 2^((d+3)/h); fi; od; C(d) := 2^(floor(d/2)) - floor ((d+4)/2) + C(d)/(4*(d+3)); od: A000943 := n-> eval(C(n));
MATHEMATICA
a[ n_ ] := 2^Floor[ n/2 ]-Floor[ (n+4)/2 ]+(1/(4*(n+3)))*Plus@@Map[ EulerPhi[ # ]*2^((n+3)/#)&, Select[ Divisors[ n+3 ], OddQ ] ]
CROSSREFS
Sequence in context: A024460 A039658 A063675 * A304966 A354539 A152006
KEYWORD
nonn,nice
EXTENSIONS
n=12 term corrected (typo in reference), formula (due to Perles) and more terms from Lukas Finschi (finschi(AT)ifor.math.ethz.ch), Mar 06 2001
STATUS
approved