login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354539
Number of decorated Dyck paths of length n without peaks at level 1 ending at arbitrary levels.
0
1, 1, 1, 2, 5, 8, 18, 31, 71, 126, 290, 527, 1218, 2253, 5223, 9796, 22763, 43170, 100502, 192347, 448476, 864887, 2019121, 3919162, 9159252, 17877619, 41819003, 82021628, 192015633
OFFSET
0,4
LINKS
H. Prodinger, Skew Dyck paths having no peaks at level 1, JIS 25 (2022) # 22.1.16, section 2.3.
FORMULA
G.f.: (-2*z^5-3*z^4+z^3-5*z^2-3*z+4-(z^2+3*z+4)*sqrt(1-6*z^2+5*z^4))/2/z/(3+z^2)/(z^2+2*z-1) .
D-finite with recurrence 12*(n+1)*a(n) +3*(-5*n-11)*a(n-1) +5*(-19*n+29)*a(n-2) +14*(5*n-4)*a(n-3) +2*(93*n-356)*a(n-4) +2*(20*n-81)*a(n-5) +2*(-22*n+217)*a(n-6) +2*(-35*n+268)*a(n-7) +2*(-27*n+182)*a(n-8) +5*(-5*n+39)*a(n-9) +5*(-n+9)*a(n-10)=0.
MAPLE
g := (-2*z^5-3*z^4+z^3-5*z^2-3*z+4-(z^2+3*z+4)*sqrt(1-6*z^2+5*z^4))/2/z/(3+z^2)/(z^2+2*z-1) ;
taylor(%, z=0, 30) ;
gfun[seriestolist](%) ;
CROSSREFS
Cf. A128723 (ending at level 0).
Sequence in context: A063675 A000943 A304966 * A152006 A271619 A197211
KEYWORD
nonn
AUTHOR
R. J. Mathar, Aug 17 2022
STATUS
approved