login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354540
Number of decorated Dyck paths of length n ending at arbitrary levels.
0
1, 1, 2, 3, 7, 11, 26, 43, 102, 175, 416, 733, 1745, 3137, 7476, 13651, 32559, 60199, 143672, 268369, 640823, 1207277, 2884008, 5472821, 13078414, 24973213, 59696622, 114609547, 274037261, 528622499, 1264251474, 2449053107
OFFSET
0,3
LINKS
H. Prodinger, Partial skew Dyck paths -- a kernel method, arXiv:2108.09785 [math.CO], 2021-2022, chapter 3.
FORMULA
G.f.: -((z+1)*(z^2+3*z-2)+(z+2)*sqrt(1-6*z^2+5*z^4))/(2*z*(z^2+2*z-1)) .
D-finite with recurrence 2*(n+1)*a(n) +(-3*n-5)*a(n-1) +8*(-2*n+3)*a(n-2) +(17*n-23)*a(n-3) +2*(17*n-61)*a(n-4) +(-9*n+41)*a(n-5) +20*(-n+6)*a(n-6) +5*(-n+7)*a(n-7)=0.
MAPLE
g := -((z+1)*(z^2+3*z-2)+(z+2)*sqrt(1-6*z^2+5*z^4))/(2*z*(z^2+2*z-1)) ;
taylor(%, z=0, 30) ;
gfun[seriestolist](%) ;
CROSSREFS
Sequence in context: A294451 A005246 A116406 * A112843 A036651 A049454
KEYWORD
nonn
AUTHOR
R. J. Mathar, Aug 17 2022
STATUS
approved