The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A116406 Expansion of ((1 + x - 2x^2) + (1+x)*sqrt(1-4x^2))/(2(1-4x^2)). 54
 1, 1, 2, 3, 7, 11, 26, 42, 99, 163, 382, 638, 1486, 2510, 5812, 9908, 22819, 39203, 89846, 155382, 354522, 616666, 1401292, 2449868, 5546382, 9740686, 21977516, 38754732, 87167164, 154276028, 345994216, 614429672, 1374282019, 2448023843 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Interleaving of A114121 and A032443. Row sums of A116405. Binomial transform is A116409. Appears to be the number of n-digit binary numbers not having more zeros than ones; equivalently, the number of unrestricted Dyck paths of length n not going below the axis. - Ralf Stephan, Mar 25 2008 From Gus Wiseman, Jun 20 2021: (Start) Also the number compositions of n with alternating sum >= 0, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. The a(0) = 1 through a(5) = 11 compositions are: () (1) (2) (3) (4) (5) (11) (21) (22) (32) (111) (31) (41) (112) (113) (121) (122) (211) (212) (1111) (221) (311) (1121) (2111) (11111) (End) From J. Stauduhar, Jan 14 2022: (Start) Also, for n >= 2, first differences of partial row sums of Pascal's triangle. The first ceiling(n/2)+1 elements of rows n=0 to n=4 in Pascal's triangle are: 1 1 1 1 2 1 3 3 1 4 6 ... The cumulative sums of these partial rows form the sequence 1,3,6,13,24,..., and its first differences are a(2),a(3),a(4),... in this sequence. (End) LINKS FORMULA a(n) = A114121(n/2)*(1+(-1)^n)/2 + A032443((n-1)/2)*(1-(-1)^n)/2. a(n) = Sum_{k=0..floor(n/2)} binomial(n-1,k). - Paul Barry, Oct 06 2007 Conjecture: n*(n-3)*a(n) +2*(-n^2+4*n-2)*a(n-1) -4*(n-2)^2*a(n-2) +8*(n-2)*(n-3)*a(n-3)=0. - R. J. Mathar, Nov 28 2014 a(n) ~ 2^(n-2) * (1 + (3+(-1)^n)/sqrt(2*Pi*n)). - Vaclav Kotesovec, May 30 2016 a(n) = 2^(n-1) - A294175(n). - Gus Wiseman, Jun 27 2021 MATHEMATICA CoefficientList[Series[((1+x-2x^2)+(1+x)Sqrt[1-4x^2])/(2(1-4x^2)), {x, 0, 40}], x] (* Harvey P. Dale, Aug 16 2012 *) ats[y_]:=Sum[(-1)^(i-1)*y[[i]], {i, Length[y]}]; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], ats[#]>=0&]], {n, 0, 15}] (* Gus Wiseman, Jun 20 2021 *) CROSSREFS The alternating sum = 0 case is A001700 or A088218. The alternating sum > 0 case appears to be A027306. The bisections are A032443 (odd) and A114121 (even). The alternating sum <= 0 version is A058622. The alternating sum < 0 version is A294175. The restriction to reversed partitions is A344607. A103919 counts partitions by sum and alternating sum (reverse: A344612). A124754 gives the alternating sum of standard compositions. A344610 counts partitions by sum and positive reverse-alternating sum. A344616 lists the alternating sums of partitions by Heinz number. Cf. A000041, A000070, A000097, A003242, A006330, A028260, A058696, A119899, A239830, A344605, A344611, A344650, A344739. Sequence in context: A101173 A294451 A005246 * A354540 A112843 A036651 Adjacent sequences: A116403 A116404 A116405 * A116407 A116408 A116409 KEYWORD easy,nonn AUTHOR Paul Barry, Feb 13 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 27 03:58 EDT 2023. Contains 361553 sequences. (Running on oeis4.)