login
A239830
Triangular array: T(n,k) = number of partitions of 2n that have alternating sum 2k, with T(0,0) = 1 for convenience.
37
1, 1, 1, 2, 2, 1, 3, 5, 2, 1, 5, 9, 5, 2, 1, 7, 17, 10, 5, 2, 1, 11, 28, 20, 10, 5, 2, 1, 15, 47, 35, 20, 10, 5, 2, 1, 22, 73, 62, 36, 20, 10, 5, 2, 1, 30, 114, 102, 65, 36, 20, 10, 5, 2, 1, 42, 170, 167, 109, 65, 36, 20, 10, 5, 2, 1, 56, 253, 262, 182, 110
OFFSET
0,4
COMMENTS
Suppose that p, with parts x(1) >= x(2) >= ... >= x(k), is a partition of n. Define AS(p), the alternating sum of p, by x(1) - x(2) + x(3) - ... + ((-1)^(k-1))*x(k); note that AS(p) has the same parity as n. Column 1 is given by T(n,1) = A000041(n) for n >= 0, which is the number of partitions of 2n having AS(p) = 0, for n >= 1. Columns 2 and 3 are essentially A000567 and A000710, and the limiting column (after deleting initial 0's), A000712. The sum of numbers in row n is A000041(2n). The corresponding array for partitions into distinct parts is given by A152146 (defined as the number of unrestricted partitions of 2n into 2k even parts).
LINKS
Alois P. Heinz, Rows n = 0..140, flattened (first 22 rows from Clark Kimberling)
EXAMPLE
First nine rows:
1
1 ... 1
2 ... 2 ... 1
3 ... 5 ... 2 ... 1
5 ... 9 ... 5 ... 2 ... 1
7 ... 17 .. 10 .. 5 ... 2 ... 1
11 .. 28 .. 20 .. 10 .. 5 ... 2 ... 1
15 .. 47 .. 35 .. 20 .. 10 .. 5 ... 2 ... 1
22 .. 73 .. 62 .. 36 .. 20 .. 10 .. 5 ... 2 ... 1
The partitions of 6 are 6, 51, 42, 411, 33, 321, 3111, 222, 2211, 21111, 111111, with respective alternating sums 6, 4, 2, 4, 0, 2, 2, 2, 0, 2, 0, so that row 3 (counting the top row as row 0) of the array is 3 .. 5 .. 2 .. 1.
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0,
expand(b(n, i-1, t)+`if`(i>n, 0, b(n-i, i, -t)*x^((t*i)/2)))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(2*n$2, 1)):
seq(T(n), n=0..14); # Alois P. Heinz, Mar 30 2014
MATHEMATICA
z = 16; s[w_] := s[w] = Total[Take[#, ;; ;; 2]] - Total[Take[Rest[#], ;; ;; 2]] &[w]; c[n_] := c[n] = Table[s[IntegerPartitions[n][[k]]], {k, 1, PartitionsP[n]}]; t[n_, k_] := Count[c[2 n], 2 k]; t[0, 0] = 1; u = Table[t[n, k], {n, 0, z}, {k, 0, n}]
TableForm[u] (* A239830, array *)
Flatten[u] (* A239830, sequence *)
(* Peter J. C. Moses, Mar 21 2014 *)
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Mar 28 2014
STATUS
approved