The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A239830 Triangular array:  T(n,k) = number of partitions of 2n that have alternating sum 2k, with T(0,0) = 1 for convenience. 37
 1, 1, 1, 2, 2, 1, 3, 5, 2, 1, 5, 9, 5, 2, 1, 7, 17, 10, 5, 2, 1, 11, 28, 20, 10, 5, 2, 1, 15, 47, 35, 20, 10, 5, 2, 1, 22, 73, 62, 36, 20, 10, 5, 2, 1, 30, 114, 102, 65, 36, 20, 10, 5, 2, 1, 42, 170, 167, 109, 65, 36, 20, 10, 5, 2, 1, 56, 253, 262, 182, 110 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Suppose that p, with parts x(1) >= x(2) >= ... >= x(k), is a partition of n.  Define AS(p), the alternating sum of p, by x(1) - x(2) + x(3) - ... + ((-1)^(k-1))*x(k); note that AS(p) has the same parity as n.  Column 1 is given by T(n,1) = A000041(n) for n >= 0, which is the number of partitions of 2n having AS(p) = 0, for n >= 1.  Columns 2 and 3 are essentially A000567 and A000710, and the limiting column (after deleting initial 0's), A000712.  The sum of numbers in row n is A000041(2n).  The corresponding array for partitions into distinct parts is given by A152146 (defined as the number of unrestricted partitions of 2n into 2k even parts). LINKS Clark Kimberling and Alois P. Heinz, Rows n = 0..140, flattened (first 22 rows from Clark Kimberling) EXAMPLE First nine rows: 1 1 ... 1 2 ... 2 ... 1 3 ... 5 ... 2 ... 1 5 ... 9 ... 5 ... 2 ... 1 7 ... 17 .. 10 .. 5 ... 2 ... 1 11 .. 28 .. 20 .. 10 .. 5 ... 2 ... 1 15 .. 47 .. 35 .. 20 .. 10 .. 5 ... 2 ... 1 22 .. 73 .. 62 .. 36 .. 20 .. 10 .. 5 ... 2 ... 1 The partitions of 6 are 6, 51, 42, 411, 33, 321, 3111, 222, 2211, 21111, 111111, with respective alternating sums 6, 4, 2, 4, 0, 2, 2, 2, 0, 2, 0, so that row 3 (counting the top row as row 0) of the array is 3 .. 5 .. 2 .. 1. MAPLE b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0,       expand(b(n, i-1, t)+`if`(i>n, 0, b(n-i, i, -t)*x^((t*i)/2)))))     end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(2*n\$2, 1)): seq(T(n), n=0..14);  # Alois P. Heinz, Mar 30 2014 MATHEMATICA z = 16; s[w_] := s[w] = Total[Take[#, ;; ;; 2]] - Total[Take[Rest[#], ;; ;; 2]] &[w]; c[n_] := c[n] = Table[s[IntegerPartitions[n][[k]]], {k, 1, PartitionsP[n]}]; t[n_, k_] := Count[c[2 n], 2 k]; t[0, 0] = 1; u = Table[t[n, k], {n, 0, z}, {k, 0, n}] TableForm[u]  (* A239830, array *) Flatten[u]    (* A239830, sequence *) (* Peter J. C. Moses, Mar 21 2014 *) CROSSREFS Cf. A239829, A239830, A239833. Sequence in context: A165997 A046752 A086350 * A140767 A060850 A208336 Adjacent sequences:  A239827 A239828 A239829 * A239831 A239832 A239833 KEYWORD nonn,tabl,easy AUTHOR Clark Kimberling, Mar 28 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 10:17 EDT 2022. Contains 354086 sequences. (Running on oeis4.)