login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239833
Number of partitions of n having an ordering of parts in which no parts of equal parity are adjacent and the first and last terms have the same parity.
8
0, 1, 1, 1, 2, 2, 3, 4, 6, 7, 10, 13, 17, 22, 28, 36, 46, 58, 72, 92, 113, 141, 174, 216, 263, 324, 394, 481, 583, 707, 852, 1029, 1235, 1481, 1774, 2118, 2524, 3003, 3567, 4225, 5003, 5906, 6968, 8202, 9646, 11317, 13275, 15531, 18160, 21195, 24718, 28772
OFFSET
0,5
LINKS
FORMULA
a(n) = A239832(n) + A239832(n+1) for n >= 0.
a(n) = A240009(n,-1) + A240009(n,1). - Alois P. Heinz, Apr 02 2014
EXAMPLE
a(10) counts these 10 partitions: [10], [1,8,1], [7,2,1], [3,6,1], [5,4,1], [5,3,2], [3,4,3], [4,1,2,1,2], [2,3,2,1,2], [1,2,1,2,1,2,1].
MAPLE
b:= proc(n, i, t) option remember; `if`(abs(t)>n, 0,
`if`(n=0, 1, `if`(i<1, 0, b(n, i-1, t)+
`if`(i>n, 0, b(n-i, i, t+(2*irem(i, 2)-1))))))
end:
a:= n-> b(n$2, -1) +b(n$2, 1):
seq(a(n), n=0..80); # Alois P. Heinz, Apr 02 2014
MATHEMATICA
p[n_] := p[n] = Select[IntegerPartitions[n], Abs[Count[#, _?OddQ] - Count[#, _?EvenQ]] == 1 &]; t = Table[p[n], {n, 0, 10}]
TableForm[t] (* shows the partitions*)
t = Table[Length[p[n]], {n, 0, 60}] (* A239833 *)
(* Peter J. C. Moses, Mar 10 2014 *)
b[n_, i_, t_] := b[n, i, t] = If[Abs[t]>n, 0, If[n==0, 1, If[i<1, 0, b[n, i-1, t] + If[i>n, 0, b[n-i, i, t+(2*Mod[i, 2]-1)]]]]]; a[n_] := b[n, n, -1] + b[n, n, 1]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Oct 12 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 29 2014
STATUS
approved