login
A165997
Irregular triangle read by rows: T(0,0) = 1, T(n,k) = T(n,k-1) + T(n-1,k) for n > 0, 0 < k <= f(n), where f(n) = floor((2*n+3)/3), and entries outside triangle are 0.
0
1, 1, 1, 1, 1, 2, 2, 1, 3, 5, 1, 4, 9, 9, 1, 5, 14, 23, 23, 1, 6, 20, 43, 66, 1, 7, 27, 70, 136, 136, 1, 8, 35, 105, 241, 377, 377, 1, 9, 44, 149, 390, 767, 1144, 1, 10, 54, 203, 593, 1360, 2504, 2504, 1, 11, 65, 268, 861, 2221, 4725, 7229, 7229, 1, 12, 77, 345, 1206
OFFSET
0,6
COMMENTS
There are f(n) = floor((2*n+3)/3) = A004396(n+1) terms in row n.
EXAMPLE
Triangle begins:
k=0 1 2 3 4 5 6 7 8
n=0: 1
n=1: 1
n=2: 1, 1
n=3: 1, 2, 2
n=4: 1, 3, 5
n=5: 1, 4, 9, 9
n=6: 1, 5, 14, 23, 23
n=7: 1, 6, 20, 43, 66
n=8: 1, 7, 27, 70, 136, 136
n=9: 1, 8, 35, 105, 241, 377, 377
n=10: 1, 9, 44, 149, 390, 767, 1144
n=11: 1, 10, 54, 203, 593, 1360, 2504, 2504
n=12: 1, 11, 65, 268, 861, 2221, 4725, 7229, 7229
n=13: 1, 12, 77, 345, 1206, 3427, 8152, 15381, 22610
...
PROG
(PARI) f(n) = floor((2*(n-1)+3)/3); s=14; M=matrix(s, s); for(n=1, s, M[n, 1]=1); for(n=2, s, for(k=2, f(n), M[n, k]=M[n, k-1]+M[n-1, k])); for(n=1, s, for(k=1, f(n), print1(M[n, k], ", ")))
CROSSREFS
Cf. A004396 (row lengths).
Cf. A060941 (diagonal T(3*n, 2*n)).
Sequence in context: A289412 A266504 A111375 * A046752 A086350 A239830
KEYWORD
nonn,tabf
AUTHOR
Gerald McGarvey, Oct 03 2009
STATUS
approved