The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060941 Duchon's numbers: the number of paths of length 5*n from the origin to the line y = 2*x/3 with unit East and North steps that stay below the line or touch it. 18
 1, 2, 23, 377, 7229, 151491, 3361598, 77635093, 1846620581, 44930294909, 1113015378438, 27976770344941, 711771461238122, 18293652115906958, 474274581883631615, 12388371266483017545, 325714829431573496525, 8613086428709348334675, 228925936056388155632081 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A generalization of the ballot numbers. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..500 C. Banderier, Home page Cyril Banderier and Philippe Flajolet, Basic Analytic Combinatorics of Lattice Paths, Theoret. Comput. Sci. 281 (2002), 37-80. D. Bevan, D. Levin, P. Nugent, J. Pantone, and L. Pudwell, Pattern avoidance in forests of binary shrubs, arXiv preprint arXiv:1510:08036 [math.CO], 2015. Daniel Birmajer, Juan B. Gil, Peter R. W. McNamara, and Michael D. Weiner, Enumeration of colored Dyck paths via partial Bell polynomials, arXiv:1602.03550 [math.CO], 2016. M. T. L. Bizley, Derivation of a new formula for the number of minimal lattice paths from (0, 0) to (km, kn) having just t contacts with the line my = nx and having no points above this line; and a proof of Grossman's formula for the number of paths which may touch but do not rise above this line, Journal of the Institute of Actuaries, Vol. 80, No. 1 (1954): 55-62. M. T. L. Bizley, Derivation of a new formula for the number of minimal lattice paths from (0, 0) to (km, kn) having just t contacts with the line my = nx and having no points above this line; and a proof of Grossman's formula for the number of paths which may touch but do not rise above this line, Journal of the Institute of Actuaries, Vol. 80, No. 1 (1954): 55-62. [Cached copy] M. T. L. Bizley, Annotated copy of page 59 M. Bousquet-Mélou and A. Jehanne, Polynomial equations with one catalytic variable, algebraic series and map enumeration, arXiv:math/0504018 [math.CO], 2005. P. Duchon, Home Page Philippe Duchon, On the enumeration and generation of generalized Dyck words, Discrete Mathematics 225, 2000, 121-135. Bryan Ek, Lattice Walk Enumeration, arXiv:1803.10920 [math.CO], 2018. Bryan Ek, Unimodal Polynomials and Lattice Walk Enumeration with Experimental Mathematics, arXiv:1804.05933 [math.CO], 2018. P. Flajolet, Home page Don Knuth, 20th Anniversary Christmas Tree Lecture [A060941 is mentioned after about 65 minutes - N. J. A. Sloane, Dec 09 2014] Michael Wallner, Combinatorics of lattice paths and tree-like structures (Dissertation, Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien), 2016. FORMULA a(n) = Sum_{i=0..n} 1/(5*n+i+1) * C(5*n+1, n-i) * C(5*n+2*i, i). a(n) = Sum_{i=0..2*n} (-1)^i/(5*i+1) * C((5*i+1)/2, i) * 1/(1+5*(2*n-i)) * C((1+5*(2*n-i))/2, 2*n-i). G.f. A(z) satisfies: A(z) = 1+2*z*A^5-z*A^6+z*A^7+z^2*A^10. [Corrected by Bryan T. Ek, Oct 30 2017] G.f.: A(z) = exp(C(5,2)*z/5 + C(10,4)*z^2/10 + C(15,6)*z^3/15 + ...). - Don Knuth, Oct 05 2014 Recurrence: 216*(n-1)*n*(2*n-1)*(3*n-4)*(3*n-2)*(3*n-1)*(3*n+1)*(6*n-1)*(6*n+1)*(5625*n^4 - 38550*n^3 + 97425*n^2 - 107784*n + 44044)*a(n) = 540*(n-1)*(3*n-4)*(3*n-2)*(126562500*n^10 - 1373625000*n^9 + 6557484375*n^8 - 18192221250*n^7 + 32549973750*n^6 - 39248008800*n^5 + 32203028675*n^4 - 17641491134*n^3 + 6113558828*n^2 - 1191132600*n + 96112128)*a(n-1) - 450*(5*n-9)*(5*n-8)*(5*n-7)*(5*n-6)*(63281250*n^9 - 718453125*n^8 + 3556125000*n^7 - 10046426250*n^6 + 17765816250*n^5 - 20240090325*n^4 + 14698993900*n^3 - 6468702396*n^2 + 1533535184*n - 142988160)*a(n-2) + 78125*(n-2)*(5*n-14)*(5*n-13)*(5*n-12)*(5*n-11)*(5*n-9)*(5*n-8)*(5*n-7)*(5*n-6)*(5625*n^4 - 16050*n^3 + 15525*n^2 - 6084*n + 760)*a(n-3). - Vaclav Kotesovec, Oct 05 2014 Asymptotics (Duchon, 2000): a(n) ~ c * (3125/108)^n / n^(3/2), where c = 0.0876612192439026461763141944768209255550234422281635788... (constant corrected, in the reference "On the enumeration and generation of generalized Dyck words", p.132 is a wrong value 0.0887). - Vaclav Kotesovec, Oct 05 2014, c = sqrt(5*(10^(2/3) - 5^(1/3)/2^(2/3) - 2))/(18*sqrt(Pi)). - Vaclav Kotesovec, Sep 16 2021 a(n) = Gamma(n+4/5)*Gamma(n+3/5)*Gamma(n+2/5)*3125^n*hypergeom([-n, (5/2)*n+1, (5/2)*n+1/2], [5*n+2, 4*n+2], -4)*Gamma(n+1/5)/ (Pi^2*csc((2/5)*Pi)*csc((1/5)*Pi)*Gamma(4*n+2)). - Robert Israel, Oct 05 2014 a(n) = A002294(n)*hypergeom([-n,5*n/2+1/2,5*n/2+1],[4*n+2,5*n+2],-4). - Peter Luschny, Oct 05 2014 O.g.f. A(x) satisfies: A(x)^5 = 1/x*series reversion( x/((1+x)*C(x))^5 ), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. See A001450. - Peter Bala, Oct 05 2015 The sequence defined by b(n) := [x^n] A(x)^n begins [1, 2, 50, 1415, 42258, 1300727, 40820837, 1298493730, ...] and conjecturally satisfies the congruence b(p) == b(1) (mod p^3) for prime p >= 7 (checked up to p = 101). - Peter Bala, Sep 12 2021 MAPLE A060941 := n -> hypergeom([-n, 5*n/2+1/2, 5*n/2+1], [4*n+2, 5*n+2], -4)* binomial(5*n, n)/(4*n+1); seq(simplify(A060941(n)), n=0..18); # Peter Luschny, Oct 05 2014 MATHEMATICA a[n_] := ((5n)!*(5n + 1)!*HypergeometricPFQRegularized[{-n, 5n/2 + 1/2, 5n/2 + 1}, {4n + 2, 5n + 2}, -4])/n!; a /@ Range[0, 16] (* Jean-François Alcover, Jun 30 2011, after given formula *) PROG (Sage) A060941 = lambda n : hypergeometric([-n, 5*n/2+1/2, 5*n/2+1], [4*n+2, 5*n+2], -4)*gamma(1+5*n)/(gamma(1+n)*gamma(2+4*n)) [A060941(n).simplify() for n in range(19)] # Peter Luschny, Oct 05 2014 (MAGMA) [&+[1/(5*n+i+1)*Binomial(5*n+1, n-i)*Binomial(5*n+2*i, i): i in [0..n]]: n in [0..30]]; // Vincenzo Librandi, Feb 12 2016 CROSSREFS Cf. A000108, A001450, A001764, A002294, A300386 - A300389, A322634. See A293946 for a closely related sequence, also from the Bizley paper. Sequence in context: A234868 A239109 A266923 * A338178 A219890 A119774 Adjacent sequences:  A060938 A060939 A060940 * A060942 A060943 A060944 KEYWORD nice,nonn AUTHOR Philippe Flajolet, May 12 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 12:51 EST 2021. Contains 349394 sequences. (Running on oeis4.)