login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A239109 Number of hybrid 6-ary trees with n internal nodes. 4
1, 2, 23, 375, 7138, 148348, 3262975, 74673216, 1759690865, 42412172598, 1040644972314, 25907046248766, 652763779424538, 16614703783094140, 426563932954831827, 11033640140115676862, 287265076610919864178, 7522060666571155198520, 197969862318742854908470 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..300

SeoungJi Hong and SeungKyung Park, Hybrid d-ary trees and their generalization, Bull. Korean Math. Soc. 51 (2014), No. 1, pp. 229-235. See p. 233.

FORMULA

From Paul D. Hanna, Mar 30 2014: (Start)

G.f. A(x) satisfies:

(1) A(x) = (1 + x*A(x)^5) * (1 + x*A(x)^6).

(2) A(x) = ( (1/x)*Series_Reversion( x*(1-x-x^2)^5/(1+x)^5 ) )^(1/5).

(3) A(x) = exp( Sum_{n>=1} x^n*A(x)^(4*n)/n * Sum_{k=0..n} C(n,k)^2 * A(x)^k ).

(4) A(x) = exp( Sum_{n>=1} x^n*A(x)^(5*n)/n * Sum_{k=0..n} C(n,k)^2 / A(x)^k ).

(5) A(x) = Sum_{n>=0} Fibonacci(n+2) * x^n * A(x)^(5*n).

(6) A(x) = G(x*A(x)^4) where G(x) = A(x/G(x)^4) is the g.f. of A007863 (number of hybrid binary trees with n internal nodes).

The formal inverse of g.f. A(x) is (sqrt(1-2*x+5*x^2) - (1+x))/(2*x^6).

a(n) = [x^n] ( (1+x)/(1-x-x^2) )^(5*n+1) / (5*n+1).

(End)

MATHEMATICA

(1/x InverseSeries[x*(1 - x - x^2)^5/(1 + x)^5 + O[x]^20])^(1/5) // CoefficientList[#, x]& (* Jean-François Alcover, Oct 02 2019 *)

PROG

(PARI) a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1 + x*A^5)*(1 + x*A^6)); polcoeff(A, n)

for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014

(PARI) a(n)=polcoeff( ((1/x)*serreverse( x*(1-x-x^2)^5/(1+x +x*O(x^n))^5))^(1/5), n)

for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014

(PARI) a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*A^j)*x^m*A^(4*m)/m))); polcoeff(A, n)

for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014

(PARI) a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^j)*x^m*A^(5*m)/m))); polcoeff(A, n)

for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014

(PARI) a(n)=polcoeff(((1+x)/(1-x-x^2 +x*O(x^n)))^(5*n+1)/(5*n+1), n)

for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014

CROSSREFS

Cf. A000045, A007863, A215654, A239107, A239108, A239109.

Column k=6 of A245049.

Sequence in context: A277830 A197740 A234868 * A266923 A060941 A338178

Adjacent sequences: A239106 A239107 A239108 * A239110 A239111 A239112

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Mar 26 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 14:51 EST 2022. Contains 358695 sequences. (Running on oeis4.)