login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239108
Number of hybrid 5-ary trees with n internal nodes.
8
1, 2, 19, 253, 3920, 66221, 1183077, 21981764, 420449439, 8223704755, 163727846678, 3307039145618, 67600147666909, 1395822347989531, 29070233296701815, 609950649080323320, 12881240945694949696, 273590092192962485985, 5840400740191969187922
OFFSET
0,2
LINKS
SeoungJi Hong and SeungKyung Park, Hybrid d-ary trees and their generalization, Bull. Korean Math. Soc. 51 (2014), No. 1, pp. 229-235. See p. 233.
Sheng-liang Yang and Mei-yang Jiang, Pattern avoiding problems on the hybrid d-trees, J. Lanzhou Univ. Tech., (China, 2023) Vol. 49, No. 2, 144-150. (in Mandarin)
FORMULA
From Paul D. Hanna, Mar 30 2014: (Start)
G.f. A(x) satisfies:
(1) A(x) = (1 + x*A(x)^4) * (1 + x*A(x)^5).
(2) A(x) = ( (1/x)*Series_Reversion( x*(1-x-x^2)^4/(1+x)^4 ) )^(1/4).
(3) A(x) = exp( Sum_{n>=1} x^n*A(x)^(3*n)/n * Sum_{k=0..n} C(n,k)^2 * A(x)^k ).
(4) A(x) = exp( Sum_{n>=1} x^n*A(x)^(4*n)/n * Sum_{k=0..n} C(n,k)^2 / A(x)^k ).
(5) A(x) = Sum_{n>=0} Fibonacci(n+2) * x^n * A(x)^(4*n).
(6) A(x) = G(x*A(x)^3) where G(x) = A(x/G(x)^3) is the g.f. of A007863 (number of hybrid binary trees with n internal nodes).
The formal inverse of g.f. A(x) is (sqrt(1-2*x+5*x^2) - (1+x))/(2*x^5).
a(n) = [x^n] ( (1+x)/(1-x-x^2) )^(4*n+1) / (4*n+1).
(End)
MATHEMATICA
(1/x InverseSeries[x(1 - x - x^2)^4/(1 + x)^4 + O[x]^20])^(1/4) // CoefficientList[#, x]& (* Jean-François Alcover, Oct 02 2019 *)
PROG
(PARI) a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1 + x*A^4)*(1 + x*A^5)); polcoeff(A, n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
(PARI) a(n)=polcoeff( ((1/x)*serreverse( x*(1-x-x^2)^4/(1+x +x*O(x^n))^4))^(1/4), n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
(PARI) a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*A^j)*x^m*A^(3*m)/m))); polcoeff(A, n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
(PARI) a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^j)*x^m*A^(4*m)/m))); polcoeff(A, n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
(PARI) a(n)=polcoeff(((1+x)/(1-x-x^2 +x*O(x^n)))^(4*n+1)/(4*n+1), n)
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014
CROSSREFS
Column k=5 of A245049.
Sequence in context: A125632 A124125 A234505 * A191806 A349721 A379287
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 26 2014
STATUS
approved