The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A239108 Number of hybrid 5-ary trees with n internal nodes. 7
 1, 2, 19, 253, 3920, 66221, 1183077, 21981764, 420449439, 8223704755, 163727846678, 3307039145618, 67600147666909, 1395822347989531, 29070233296701815, 609950649080323320, 12881240945694949696, 273590092192962485985, 5840400740191969187922 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..300 SeoungJi Hong and SeungKyung Park, Hybrid d-ary trees and their generalization, Bull. Korean Math. Soc. 51 (2014), No. 1, pp. 229-235. See p. 233. Sheng-liang Yang and Mei-yang Jiang, Pattern avoiding problems on the hybrid d-trees, J. Lanzhou Univ. Tech., (China, 2023) Vol. 49, No. 2, 144-150. (in Mandarin) FORMULA From Paul D. Hanna, Mar 30 2014: (Start) G.f. A(x) satisfies: (1) A(x) = (1 + x*A(x)^4) * (1 + x*A(x)^5). (2) A(x) = ( (1/x)*Series_Reversion( x*(1-x-x^2)^4/(1+x)^4 ) )^(1/4). (3) A(x) = exp( Sum_{n>=1} x^n*A(x)^(3*n)/n * Sum_{k=0..n} C(n,k)^2 * A(x)^k ). (4) A(x) = exp( Sum_{n>=1} x^n*A(x)^(4*n)/n * Sum_{k=0..n} C(n,k)^2 / A(x)^k ). (5) A(x) = Sum_{n>=0} Fibonacci(n+2) * x^n * A(x)^(4*n). (6) A(x) = G(x*A(x)^3) where G(x) = A(x/G(x)^3) is the g.f. of A007863 (number of hybrid binary trees with n internal nodes). The formal inverse of g.f. A(x) is (sqrt(1-2*x+5*x^2) - (1+x))/(2*x^5). a(n) = [x^n] ( (1+x)/(1-x-x^2) )^(4*n+1) / (4*n+1). (End) MATHEMATICA (1/x InverseSeries[x(1 - x - x^2)^4/(1 + x)^4 + O[x]^20])^(1/4) // CoefficientList[#, x]& (* Jean-François Alcover, Oct 02 2019 *) PROG (PARI) a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1 + x*A^4)*(1 + x*A^5)); polcoeff(A, n) for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014 (PARI) a(n)=polcoeff( ((1/x)*serreverse( x*(1-x-x^2)^4/(1+x +x*O(x^n))^4))^(1/4), n) for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014 (PARI) a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*A^j)*x^m*A^(3*m)/m))); polcoeff(A, n) for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014 (PARI) a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^j)*x^m*A^(4*m)/m))); polcoeff(A, n) for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014 (PARI) a(n)=polcoeff(((1+x)/(1-x-x^2 +x*O(x^n)))^(4*n+1)/(4*n+1), n) for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 30 2014 CROSSREFS Cf. A000045, A007863, A215654, A239107, A239108, A239109. Column k=5 of A245049. Sequence in context: A125632 A124125 A234505 * A191806 A349721 A252710 Adjacent sequences: A239105 A239106 A239107 * A239109 A239110 A239111 KEYWORD nonn AUTHOR N. J. A. Sloane, Mar 26 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 14 20:49 EDT 2024. Contains 374323 sequences. (Running on oeis4.)