login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215654
G.f. satisfies: A(x) = (1 + x*A(x)^2) * (1 + x*A(x)^3).
13
1, 2, 11, 81, 684, 6257, 60325, 603641, 6210059, 65272503, 697898849, 7566847547, 82999675563, 919376968734, 10269588489433, 115548651723889, 1308374198000780, 14897993185500455, 170482798370871370, 1959574731164246402, 22614008012647634411, 261915716386286916342
OFFSET
0,2
COMMENTS
More generally, for fixed parameters p, q, r, and s, if F(x) satisfies:
F(x) = (1 + x^r*F(x)^(p+1)) * (1 + x^(r+s)*F(x)^(p+q+1)), then
F(x) = exp( Sum_{n>=1} x^(n*r)*F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^(k*s)*F(x)^(k*q)] ).
The radius of convergence of g.f. A(x) is r = 0.08035832347291483065438962031... with A(r) = 1.5393913914574609282262181402132760790902539070... where y=A(r) satisfies 20*y^3 - 38*y^2 + 15*y - 6 = 0.
r = 1/(187/300*17^(2/3) + 119/75*17^(1/3) + 1273/300). - Vaclav Kotesovec, Sep 17 2013
Number of hybrid ternary trees with n internal nodes. [Hong and Park]. - N. J. A. Sloane, Mar 26 2014
LINKS
SeoungJi Hong and SeungKyung Park, Hybrid d-ary trees and their generalization, Bull. Korean Math. Soc. 51 (2014), No. 1, pp. 229-235. See p. 233. - N. J. A. Sloane, Mar 26 2014
Sheng-liang Yang and Mei-yang Jiang, Pattern avoiding problems on the hybrid d-trees, J. Lanzhou Univ. Tech., (China, 2023) Vol. 49, No. 2, 144-150. (in Mandarin)
FORMULA
G.f. A(x) satisfies:
(1) A(x) = sqrt( (1/x)*Series_Reversion( x*(1-x-x^2)^2/(1+x)^2 ) ).
(2) A(x) = exp( Sum_{n>=1} x^n*A(x)^n/n * Sum_{k=0..n} C(n,k)^2 * A(x)^k ).
(3) A(x) = exp( Sum_{n>=1} x^n*A(x)^(2*n)/n * Sum_{k=0..n} C(n,k)^2 / A(x)^k ).
(4) A(x) = Sum_{n>=0} Fibonacci(n+2) * x^n * A(x)^(2*n).
(5) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the g.f. of A007863 (number of hybrid binary trees with n internal nodes).
The formal inverse of g.f. A(x) is (sqrt(1-2*x+5*x^2) - (1+x))/(2*x^3).
a(n) = [x^n] ( (1+x)/(1-x-x^2) )^(2*n+1) / (2*n+1).
Recurrence: 100*(n-1)*n*(2*n-1)*(2*n+1)*(4913*n^3 - 26877*n^2 + 49912*n - 30480)*a(n) = 2*(n-1)*(2*n-1)*(6254249*n^5 - 40468670*n^4 + 99110119*n^3 - 109861414*n^2 + 52822608*n - 8566560)*a(n-1) - 3*(2343501*n^7 - 22194333*n^6 + 87905623*n^5 - 187987155*n^4 + 233161624*n^3 - 166253172*n^2 + 62010112*n - 8952000)*a(n-2) + 6*(n-2)*(2*n-5)*(3*n-8)*(3*n-4)*(4913*n^3 - 12138*n^2 + 10897*n - 2532)*a(n-3). - Vaclav Kotesovec, Sep 17 2013
a(n) ~ 1/1020*sqrt(73695 + 11730*17^(2/3) + 28815*17^(1/3)) * (187/300*17^(2/3) + 119/75*17^(1/3) + 1273/300)^n / (n^(3/2)*sqrt(Pi)). - Vaclav Kotesovec, Sep 17 2013
a(n) = 1/(2*n+1)*Sum_{i=0..n} C(2*n+i,i)*C(2*n+i+1,n-i). - Vladimir Kruchinin, Apr 04 2019
EXAMPLE
G.f.: A(x) = 1 + 2*x + 11*x^2 + 81*x^3 + 684*x^4 + 6257*x^5 + 60325*x^6 +...
Related expansions.
A(x)^2 = 1 + 4*x + 26*x^2 + 206*x^3 + 1813*x^4 + 17032*x^5 +...
A(x)^3 = 1 + 6*x + 45*x^2 + 383*x^3 + 3519*x^4 + 34023*x^5 +...
A(x)^5 = 1 + 10*x + 95*x^2 + 925*x^3 + 9270*x^4 + 95237*x^5 +...
where A(x) = 1 + x*(A(x)^2 + A(x)^3) + x^2*A(x)^5.
The g.f. also satisfies the series:
A(x) = 1 + 2*x*A(x)^2 + 3*x^2*A(x)^4 + 5*x^3*A(x)^6 + 8*x^4*A(x)^8 + 13*x^5*A(x)^10 + 21*x^6*A(x)^12 + 34*x^7*A(x)^14 +...+ Fibonacci(n+2)*x^n*A(x)^(2*n) +...
and consequently, A( x*(1-x-x^2)^2/(1+x)^2 ) = (1+x)/(1-x-x^2).
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + A(x))*x*A(x) + (1 + 2^2*A(x) + A(x)^2)*x^2*A(x)^2/2 +
(1 + 3^2*A(x) + 3^2*A(x)^2 + A(x)^3)*x^3*A(x)^3/3 +
(1 + 4^2*A(x) + 6^2*A(x)^2 + 4^2*A(x)^3 + A(x)^4)*x^4*A(x)^4/4 +
(1 + 5^2*A(x) + 10^2*A(x)^2 + 10^2*A(x)^3 + 5^2*A(x)^4 + A(x)^5)*x^5*A(x)^5/5 +...
Explicitly,
log(A(x)) = 2*x + 18*x^2/2 + 185*x^3/3 + 2006*x^4/4 + 22412*x^5/5 + 255249*x^6/6 + 2946155*x^7/7 + 34342270*x^8/8 +...+ L(n)*x^n/n +...
where L(n) = [x^n] (1+x)^(2*n)/(1-x-x^2)^(2*n) / 2.
MAPLE
a:= n-> coeff(series(RootOf((1+x*A^2)*(1+x*A^3)-A, A), x, n+1), x, n):
seq(a(n), n=0..33); # Alois P. Heinz, Apr 04 2019
MATHEMATICA
CoefficientList[Sqrt[1/x*InverseSeries[Series[x*(1-x-x^2)^2/(1+x)^2, {x, 0, 20}], x]], x] (* Vaclav Kotesovec, Sep 17 2013 *)
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1 + x*A^2)*(1 + x*A^3)); polcoeff(A, n)}
(PARI) {a(n)=polcoeff(sqrt((1/x)*serreverse( x*(1-x-x^2)^2/(1+x +x*O(x^n))^2)), n)}
for(n=0, 31, print1(a(n), ", "))
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*A^j)*x^m*A^m/m))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2/A^j)*x^m*A^(2*m)/m))); polcoeff(A, n)}
(PARI) {a(n)=polcoeff(((1+x)/(1-x-x^2 +x*O(x^n)))^(2*n+1)/(2*n+1), n)}
(Maxima)
a(n):=sum(binomial(2*n+i, i)*binomial(2*n+i+1, n-i), i, 0, n)/(2*n+1); /* Vladimir Kruchinin, Apr 04 2019 */
CROSSREFS
Column k=3 of A245049.
Sequence in context: A197718 A359222 A309417 * A330677 A209094 A378954
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 19 2012
STATUS
approved