login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215651
Number of transformation semigroups acting on n points (counting conjugates as one), i.e., the number of subsemigroups of the full transformation semigroup T_n.
1
1, 2, 8, 283, 132069776
OFFSET
0,2
COMMENTS
The semigroup analog of A000638.
We apply the categorical viewpoint and consider the empty set as a semigroup.
LINKS
James East, Attila Egri-Nagy, James D. Mitchell, Enumerating Transformation Semigroups, Semigroup Forum 95, 109-125 (2017); arXiv: 1403.0274 [math.GR], 2014-2017.
PROG
(GAP)
################################################################################
# GAP 4.5 function calculating the conjugacy classes of a set of subsemigrops.
# (C) 2012 Attila Egri-Nagy www.egri-nagy.hu
# GAP can be obtained from www.gap-system.org
################################################################################
# Input: list of subsemigroups of a transformation semigroup,
# automorphism group of the semigroup
# Output: list of conjugacy classes
ConjugacyClassesSubsemigroups := function(subsemigroups, G)
local ssg, #subsemigroup
ccl, #conjugacy class
ccls; #result: all conjugacy classes
ccls := [];
for ssg in subsemigroups do
#we check whether the subsemigroup is already in a conjugacy class
if not ForAny(ccls, x -> ssg in x) then
#conjugating by all group elements
ccl := DuplicateFreeList(
List(G,
g -> AsSortedList(List(ssg, t-> t^g))));
Add(ccls, ccl);
fi;
od;
return ccls;
end;
CROSSREFS
Sequence in context: A009675 A012301 A296406 * A363180 A285850 A009501
KEYWORD
nonn,more
AUTHOR
Attila Egri-Nagy, Aug 19 2012
EXTENSIONS
a(4) moved from a comment by Attila Egri-Nagy, Jan 09 2014 to data by Andrey Zabolotskiy, Mar 25 2021
STATUS
approved