The OEIS is supported by the many generous donors to the OEIS Foundation.


(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000638 Number of permutation groups of degree n; also number of conjugacy classes of subgroups of symmetric group S_n; also number of molecular species of degree n.
(Formerly M1244 N0477)
1, 1, 2, 4, 11, 19, 56, 96, 296, 554, 1593, 3094, 10723, 20832, 75154, 159129, 686165, 1466358, 7274651 (list; graph; refs; listen; history; text; internal format)
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 147.
Labelle, Jacques. "Quelques espèces sur les ensembles de petite cardinalité.", Ann. Sc. Math. Québec 9.1 (1985): 31-58.
G. Pfeiffer, Counting Transitive Relations, preprint 2004.
C. C. Sims, Computational methods in the study of permutation groups, pp. 169-183 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
H. Decoste, G. Labelle, & J. Labelle, Espèces sur les petites cardinalités Tableaux divers, Université du Québec à Montréal (octobre 1988), Unpublished.
Justine Falque, On the enumeration of P-oligomorphic groups, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 25-26.
D. Holt, Enumerating subgroups of the symmetric group, in Computational Group Theory and the Theory of Groups, II, edited by L.-C. Kappe, A. Magidin and R. Morse. AMS Contemporary Mathematics book series, vol. 511, pp. 33-37. [Annotated copy]
Jacques Labelle, Quelques espèces sur les ensembles de petite cardinalité, Ann. Sc. Math. Québec 9.1 (1985): 31-58. (Annotated scanned copy of preprint)
A. C. Lunn and J. K. Senior, Isomerism and Configuration, J. Physical Chem. 33 (7) 1929, 1027-1079.
A. C. Lunn and J. K. Senior, Isomerism and Configuration, J. Physical Chem. 33 (7) 1929, 1027-1079. [Annotated scan of page 1069 only]
L. Naughton and G. Pfeiffer, Integer Sequences Realized by the Subgroup Pattern of the Symmetric Group, arXiv preprint arXiv:1211.1911 [math.GR], 2012 and J. Int. Seq. 16 (2013) #13.5.8
G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
Colin D. Reid, Simon M. Smith, Groups acting on trees with Tits' independence property (P), arXiv:2002.11766 [math.GR], 2020.
N. J. A. Sloane, Transforms
Dashiell Stander, Qinan Yu, Honglu Fan, and Stella Biderman, Grokking Group Multiplication with Cosets, arXiv:2312.06581 [cs.LG], 2023. See footnote, p. 25.
G. Xiao, PermGroup
Euler Transform of A005226. Define b(n), c(n), d(n): b(1)=d(1)=0. b(k)=A005227(k), k>1. c(k)=a(k), k>0, d(k)=A005226(k), k>1. d is Dirichlet convolution of b and c. - Christian G. Bower, Feb 23 2006
(Magma) n := 5; #SubgroupLattice(Sym(n));
# GAP 4.2
Partial sums of A000637.
Cf. A000001, A000019. Unlabeled version of A005432.
Sequence in context: A283173 A283254 A347007 * A039824 A204519 A076636
a(11) corrected and a(12) added by Goetz Pfeiffer (goetz.pfeiffer(AT)nuigalway.ie), Jan 21 2004
Extended to a(18) using Derek Holt's data from A000637. - N. J. A. Sloane, Jul 31 2010

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 21 06:16 EST 2024. Contains 370219 sequences. (Running on oeis4.)