OFFSET
1,2
LINKS
J. Conrad, Table of n, a(n) for n = 1..180
FORMULA
Conjecture: for n>6, a(n) = n^2 - 3. - Ralf Stephan, Mar 07 2004
Conjectures from Colin Barker, May 02 2017: (Start)
G.f.: x*(1 - x + x^2 + 4*x^3 - 3*x^4 + 2*x^6 - 4*x^7 + 2*x^8) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>9.
(End)
MATHEMATICA
p[1] = 1 + q; p[n_] := p[n] = p[n - 1] (1 + Sum[q^k, {k, 1, 2 n - 1, 2}]) // Expand; a[1] = 1; a[n_] := p[n] // CoefficientList[#, q]& // Union // Length; Array[a, 180] (* Jean-François Alcover, May 04 2017 *)
PROG
(Python)
def get(d, x): return d[x] if len(d) > x >= 0 else 0
def convolve(a, b):
r = []
for x in range(len(a) + len(b) - 1):
n = 0
for k in range(x + 1): n += get(a, k) * get(b, x - k)
r.append(n)
return r
def unique_in(d):
out = list([])
for elem in d:
if elem not in out: out.append(elem)
return len(out)
def A039824(x):
seed = [0**k + k % 2 for k in range(2*(x+1))]
product = seed[0:2]
out = list([1])
for k in range(2, x + 1):
product = convolve(product, seed[0:2*k])
out.append(unique_in(product))
return out
# J. Conrad, May 02 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved