login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028872 a(n) = n^2 - 3. 22
1, 6, 13, 22, 33, 46, 61, 78, 97, 118, 141, 166, 193, 222, 253, 286, 321, 358, 397, 438, 481, 526, 573, 622, 673, 726, 781, 838, 897, 958, 1021, 1086, 1153, 1222, 1293, 1366, 1441, 1518, 1597, 1678, 1761, 1846, 1933, 2022, 2113, 2206, 2301 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

COMMENTS

Number of edges in the join of two star graphs, each of order n, S_n * S_n. - Roberto E. Martinez II, Jan 07 2002

Number of vertices in the hexagonal triangle T(n-2) (see the He et al. reference). - Emeric Deutsch, Nov 14 2014

Sequence allows us to find X values of the equation: X^3 + (X - 3)^2 + X - 6 = Y^2. To prove that X = n^2 + 4n + 1: Y^2 = X^3 + (X - 3)^2 + X - 6 = X^3 + X^2 - 5X + 3 = (X + 3)(X^2 - 2X + 1) = (X + 3)*(X - 1)^2 it means: X = 1 or (X + 3) must be a perfect square, so X = k^2 - 3 with k>=2. we can put: k = n + 2, which gives: X = n^2 + 4n + 1 and Y = (n + 2)(n^2 + 4n). - Mohamed Bouhamida (bhmd95(AT)yahoo.fr), Nov 29 2007

Equals binomial transform of [1, 5, 2, 0, 0, 0, ...]. - Gary W. Adamson, Apr 30 2008

Let C = 2 + sqrt(3) = 3.732...; and 1/C = 0.267...; then a(n) = (n - 2 + C) * (n - 2 + 1/C). Example: a(5) = 46 = (5 + 3.732...)*(5 + 0.267...). - Gary W. Adamson, Jul 29 2009

a(n), n>=0, with a(0) = -3 and a(1) = -2, gives the values for a*c of indefinite binary quadratic forms [a, b, c] of discriminant D = 12 for b = 2*n. In general D = b^2 - 4*a*c > 0 and the form [a, b, c] is a*x^2 + b*x*y + c*y^2. - Wolfdieter Lang, Aug 15 2013

If A(n) is a 3 X 3 Khovanski matrix having 1 below the main diagonal, n on the main diagonal, and n^3 above the main diagonal, then (Det(A(n)) - 2*n^3) / n^4 = a(n). - Gary Detlefs, Nov 12 2013

Imagine a large square containing four smaller square "holes" of equal size:  Let x = large square side and y = smaller square side; considering instances where the area of this shape [x^2 - 4*y^2] equals the length of its perimeter, [4*(x+4*y)]. When y is an integer n, the above equation is satisfied by x = 2 + 2*sqrt(a(n)). - Peter M. Chema, Apr 10 2016

a(n+1) is the number of distinct linear partitions of 2 X n grid points. A linear partition is a way to partition given points by a line into two nonempty subsets. Details can be found in Pan's link. - Ran Pan, Jun 06 2016

Numbers represented as 141 in number base B: 141(5)=46, 141(6)=61 and, if 'digits' larger than (B-1) are allowed, 141(2)=13, 141(3)=22, 141(4)=33. - Ron Knott, Nov 14 2017

LINKS

G. C. Greubel, Table of n, a(n) for n = 2..5000

P. De Geest, Palindromic Quasipronics of the form n(n+x)

Q. H. He, J. Z. Gu, S. J. Xu, and W. H. Chan, Hosoya polynomials of hexagonal triangles and trapeziums, MATCH, Commun. Math. Comput. Chem. 72, 2014, 835-843. - Emeric Deutsch, Nov 14 2014

Ran Pan, Exercise V, Project P.

Eric Weisstein's World of Mathematics, Near-Square Prime

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

From R. J. Mathar, Apr 28 2008: (Start)

O.g.f.: x^2*(1 + 3*x - 2*x^2)/(1 - x)^3.

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)

a(n) = floor((n^4 + 2*n^3)/(n^2 + 1)). - Gary Detlefs, Feb 20 2010

a(n) = a(n-1) + 2*n-1 (with a(2)=1). - Vincenzo Librandi, Nov 18 2010

a(n)*a(n-1) + 3 = (a(n) - n)^2 = A014209(n-2)^2. - Bruno Berselli, Dec 07 2011

a(n) = A000290(n) - 3. - Michel Marcus, Nov 13 2013

Sum_{n>=2} 1/a(n) = 2/3 - Pi*cot(sqrt(3)*Pi)/(2*sqrt(3)) = 1.476650189986093617... . - Vaclav Kotesovec, Apr 10 2016

E.g.f.: (x^2 + x - 3)*exp(x) + 2*x + 3. - G. C. Greubel, Jul 19 2017

MAPLE

A028872 := proc(n) n^2-3; end proc: # R. J. Mathar, Aug 23 2011

MATHEMATICA

lst={}; Do[AppendTo[lst, n^2-3], {n, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 27 2009 *)

s = 1; lst = {s}; Do[s += n; AppendTo[lst, s], {n, 5, 100, 2}]; lst (* Zerinvary Lajos, Jul 12 2009 *)

Range[2, 60]^2-3 (* or *) LinearRecurrence[{3, -3, 1}, {1, 6, 13}, 60] (* Harvey P. Dale, May 09 2013 *)

PROG

(Sage) [lucas_number1(3, n, 3) for n in xrange(2, 50)] # Zerinvary Lajos, Jul 03 2008

(PARI) a(n)=n^2-3 \\ Charles R Greathouse IV, Aug 23 2011

(PARI) x='x+O('x^99); Vec(x^2*(-1-3*x+2*x^2)/(-1+x)^3) \\ Altug Alkan, Apr 10 2016

CROSSREFS

Cf. A117950, A132411, A132414, A002522.

Sequence in context: A101247 A243655 A072212 * A049718 A036707 A054311

Adjacent sequences:  A028869 A028870 A028871 * A028873 A028874 A028875

KEYWORD

nonn,easy,changed

AUTHOR

Patrick De Geest

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 22 15:13 EST 2017. Contains 295089 sequences.