login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028870 Numbers k such that k^2 - 2 is prime. 37
2, 3, 5, 7, 9, 13, 15, 19, 21, 27, 29, 33, 35, 37, 43, 47, 49, 55, 61, 63, 69, 71, 75, 77, 89, 93, 103, 107, 117, 119, 121, 127, 131, 135, 139, 145, 155, 161, 169, 173, 177, 183, 191, 205, 211, 217, 223, 231, 233, 237, 239, 247, 253, 257, 259, 265, 267, 273, 279, 285 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
It is conjectured that this sequence is infinite.
Primes 2,3,5,7,13,... are in A062326. - Zak Seidov, Oct 05 2014
REFERENCES
D. Shanks, Solved and Unsolved Problems in Number Theory, 2nd. ed., Chelsea, 1978, p. 31.
LINKS
Eric Weisstein's World of Mathematics, Near-Square Prime
FORMULA
a(n) = sqrt(2 + A028871(n)). - Zak Seidov, Oct 05 2014
EXAMPLE
5^2 - 2 = 23 is prime, so 5 is in the sequence.
MAPLE
select(k->isprime(k^2-2), [$1..300]); # Muniru A Asiru, Jul 15 2018
MATHEMATICA
a[n_]:=n^x-y; lst={}; x=2; y=2; Do[If[PrimeQ[a[n]], AppendTo[lst, n]], {n, 0, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 03 2009 *)
Select[Range[300], PrimeQ[#^2-2]&] (* Harvey P. Dale, Mar 21 2013 *)
PROG
(Magma) [n: n in [1..1000] |IsPrime( n^2 - 2)]; // Vincenzo Librandi, Nov 18 2010
(PARI) is(n)=isprime(n^2-2) \\ Charles R Greathouse IV, Jul 01 2013
CROSSREFS
Cf. A028871.
Sequence in context: A361852 A032459 A263647 * A338356 A057886 A367630
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 21 16:24 EDT 2024. Contains 374475 sequences. (Running on oeis4.)