The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A028870 Numbers k such that k^2 - 2 is prime. 37
 2, 3, 5, 7, 9, 13, 15, 19, 21, 27, 29, 33, 35, 37, 43, 47, 49, 55, 61, 63, 69, 71, 75, 77, 89, 93, 103, 107, 117, 119, 121, 127, 131, 135, 139, 145, 155, 161, 169, 173, 177, 183, 191, 205, 211, 217, 223, 231, 233, 237, 239, 247, 253, 257, 259, 265, 267, 273, 279, 285 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS It is conjectured that this sequence is infinite. Primes 2,3,5,7,13,... are in A062326. - Zak Seidov, Oct 05 2014 REFERENCES D. Shanks, Solved and Unsolved Problems in Number Theory, 2nd. ed., Chelsea, 1978, p. 31. LINKS Nathaniel Johnston, Table of n, a(n) for n = 1..10000 P. De Geest, Palindromic Quasipronics of the form n(n+x) Eric Weisstein's World of Mathematics, Near-Square Prime FORMULA a(n) = sqrt(2 + A028871(n)). - Zak Seidov, Oct 05 2014 EXAMPLE 5^2 - 2 = 23 is prime, so 5 is in the sequence. MAPLE select(k->isprime(k^2-2), [\$1..300]); # Muniru A Asiru, Jul 15 2018 MATHEMATICA a[n_]:=n^x-y; lst={}; x=2; y=2; Do[If[PrimeQ[a[n]], AppendTo[lst, n]], {n, 0, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 03 2009 *) Select[Range[300], PrimeQ[#^2-2]&] (* Harvey P. Dale, Mar 21 2013 *) PROG (Magma) [n: n in [1..1000] |IsPrime( n^2 - 2)]; // Vincenzo Librandi, Nov 18 2010 (PARI) is(n)=isprime(n^2-2) \\ Charles R Greathouse IV, Jul 01 2013 CROSSREFS Cf. A028871. Sequence in context: A361852 A032459 A263647 * A338356 A057886 A367630 Adjacent sequences: A028867 A028868 A028869 * A028871 A028872 A028873 KEYWORD nonn,easy AUTHOR Patrick De Geest STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 21 16:24 EDT 2024. Contains 374475 sequences. (Running on oeis4.)