login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057886
Number of integer 4-tuples that give the lengths of the sides of a nondegenerate quadrilateral with perimeter n.
5
0, 0, 0, 1, 1, 2, 3, 5, 7, 9, 13, 16, 22, 25, 34, 38, 50, 54, 70, 75, 95, 100, 125, 131, 161, 167, 203, 210, 252, 259, 308, 316, 372, 380, 444, 453, 525, 534, 615, 625, 715, 725, 825, 836, 946, 957, 1078, 1090, 1222, 1234, 1378, 1391, 1547, 1560, 1729, 1743
OFFSET
1,6
LINKS
James East and Ron Niles, Integer polygons of given perimeter, arXiv:1710.11245 [math.CO], 2017.
T. Jenkyns and E. Muller, Triangular triples from ceilings to floors, Amer. Math. Monthly, 107 (Aug. 2000), 634-639.
FORMULA
Conjecture: a(1)=0 and, for n>1, a(n)=a(n-1)+d(n-1), where d(n)=floor(n/4)*floor((n-2)/4) if n is even and d(n)=floor((n+1)/4) if n is odd.
Conjectures from Colin Barker, Oct 27 2013: (Start)
a(n) = ((n-1)*((n-2)*n+18)+6*sin((Pi*n)/2)+18*cos((Pi*n)/2))/96 for n even;
a(n) = (n^3-7*n+6*sin((Pi*n)/2)+18*cos((Pi*n)/2))/96 for n odd.
G.f.: x^4*(x^3-x^2+1) / ((x-1)^4*(x+1)^3*(x^2+1)). (End)
Conjecture: a(n) = ( 2*n^3-3*n^2+13*n-18 - 3*(n^2-9*n+6)*(-1)^n + 12*(2+(-1)^n)*(-1)^((2*n+(-1)^n-1)/4) )/192. - Luce ETIENNE, Nov 06 2014
EXAMPLE
There are five quadrilaterals with perimeter 8, with sides (1,1,3,3), (1,2,2,3), (1,2,3,2), (1,3,1,3) and (2,2,2,2), so a(8)=5.
MAPLE
A057886 := proc(n) local s1, s2, s3, s4, a; a := 0; if 4 <= n then for s1 to floor(1/4*n) do for s2 from s1 to floor(1/3*n - 1/3*s1) do for s3 from max(s2, floor(1/2*n - s1 - s2) + 1) to floor(1/2*n - 1/2*s1 - 1/2*s2) do s4 := n - s1 - s2 - s3; if s1 < s2 and s2 < s3 and s3 < s4 then a := a + 3; elif s2 = s3 and (s1 = s2 or s3 = s4) then a := a + 1; else a := a + 2; end if; end do; end do; end do; end if; return a; end proc; seq(A057886(n), n = 1 .. 56); # Felix Huber, Mar 13 2024
MATHEMATICA
Needs["DiscreteMath`Combinatorica`"]; Table[s=Select[Partitions[n], Length[ # ]==4 && #[[1]]<Total[Rest[ # ]] &]; cnt=0; Do[cnt=cnt+Length[ListNecklaces[4, s[[i]], Dihedral]], {i, Length[s]}]; cnt, {n, 50}] (* T. D. Noe, Oct 24 2006 *)
CROSSREFS
The Moebius transform is A057887. Cf. A005044.
Cf. A062890.
Sequence in context: A263647 A028870 A338356 * A367630 A354531 A302835
KEYWORD
nonn
AUTHOR
John W. Layman, Sep 19 2000
EXTENSIONS
Corrected by T. D. Noe, Oct 24 2006
STATUS
approved