login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302835
Expansion of (1/(1 - x))*Product_{k>=1} 1/(1 - x^(k*(k+1)/2)).
6
1, 2, 3, 5, 7, 9, 13, 17, 21, 27, 34, 41, 51, 62, 73, 88, 105, 122, 144, 168, 193, 225, 260, 296, 340, 388, 438, 498, 564, 632, 713, 802, 894, 1001, 1118, 1239, 1380, 1533, 1692, 1873, 2070, 2275, 2508, 2760, 3022, 3317, 3637, 3969, 4341, 4742, 5159, 5624, 6125, 6645, 7220, 7839
OFFSET
0,2
COMMENTS
Partial sums of A007294.
Number of partitions of n into triangular numbers if there are two kinds of 1's.
FORMULA
G.f.: (1/(1 - x))*Sum_{j>=0} x^(j*(j+1)/2)/Product_{k=1..j} (1 - x^(k*(k+1)/2)).
From Vaclav Kotesovec, Apr 13 2018: (Start)
a(n) ~ exp(3*Pi^(1/3) * Zeta(3/2)^(2/3) * n^(1/3) / 2) * Zeta(3/2)^(1/3) / (2^(5/2) * sqrt(3) * Pi^(4/3) * n^(5/6)).
a(n) ~ 2 * n^(2/3) / (Pi^(1/3) * Zeta(3/2)^(2/3)) * A007294(n). (End)
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, n+1,
b(n, i-1)+(t->`if`(t>n, 0, b(n-t, i)))(i*(i+1)/2))
end:
a:= n-> b(n, isqrt(2*n)):
seq(a(n), n=0..100); # Alois P. Heinz, Apr 13 2018
MATHEMATICA
nmax = 55; CoefficientList[Series[1/(1 - x) Product[1/(1 - x^(k (k + 1)/2)), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 55; CoefficientList[Series[1/(1 - x) Sum[x^(j (j + 1)/2)/Product[(1 - x^(k (k + 1)/2)), {k, 1, j}], {j, 0, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 13 2018
STATUS
approved