login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A354531 Numbers k such that 2*(2^k-1) is in A354525. 4
1, 2, 3, 5, 7, 9, 13, 17, 19, 31, 61, 67, 89, 107, 127, 137 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Numbers k such that for every prime factor p of 2^k-1 we have gpf(2*(2^k-1)+p) = p.

Numbers k such that for every prime factor p of 2^k-1, 2*(2^k-1)+p is p-smooth.

All terms except 2 are odd: if k is even, then 3 is a factor of 2^k-1, so 3^m = 2*(2^k-1)+3 = 2^(k+1) + 1 => k+1 >= 3^(m-1). The only possible case is (k,m) = (2,2).

Clearly A000043 is a subsequence. The exceptional terms (1, 9, 67, 137, ...) are listed in A354532.

The next term is >= 349. The next composite term, if exists, is >= 7921 = 89^2.

LINKS

Table of n, a(n) for n=1..16.

EXAMPLE

See A354532.

PROG

(PARI) gpf(n) = vecmax(factor(n)[, 1]);

ispsmooth(n, p, {lim=1<<256}) = if(n<=lim, n==1 || gpf(n)<=p, my(N=n/p^valuation(n, p)); forprime(q=2, p, N=N/q^valuation(N, q); if((N<=lim && isprime(N)) || N==1, return(N<=p))); 0); \\ check if n is p-smooth, using brute force if n is too large

isA354531(n, {lim=256}, {p_lim=1<<32}) = {

my(N=2^n-1);

if(isprime(N), return(1));

if(n>lim, forprime(p=3, p_lim, if(N%p==0 && !ispsmooth(2*N+p, p), return(0)))); \\ first check if there is a prime factor p <= p_lim of 2^n-1 such that 2*(2^n-1)+p is not p-smooth (for large n)

my(d=divisors(n));

for(i=1, #d, my(f=factor(2^d[i]-1)[, 1]); for(j=1, #f, if(!ispsmooth(2*N+f[j], f[j], 1<<lim), return(0)))); 1 \\ then check if 2*(2^n-1)+p is p-smooth for p|2^d-1, d|N

}

CROSSREFS

Cf. A354525, A000043, A354532, A354533, A354536.

Sequence in context: A028870 A338356 A057886 * A302835 A200672 A341497

Adjacent sequences: A354528 A354529 A354530 * A354532 A354533 A354534

KEYWORD

nonn,hard,more

AUTHOR

Jianing Song, Aug 16 2022

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 29 16:07 EST 2023. Contains 359923 sequences. (Running on oeis4.)