login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123968
a(n) = n^2 - 3.
3
-2, 1, 6, 13, 22, 33, 46, 61, 78, 97, 118, 141, 166, 193, 222, 253, 286, 321, 358, 397, 438, 481, 526, 573, 622, 673, 726, 781, 838, 897, 958, 1021, 1086, 1153, 1222, 1293, 1366, 1441, 1518, 1597, 1678, 1761, 1846, 1933, 2022, 2113, 2206, 2301, 2398, 2497
OFFSET
1,1
COMMENTS
Essentially the same as A028872 (n^2-3 with offset 2).
a(n) is the constant term of the quadratic factor of the characteristic polynomial of the 5 X 5 tridiagonal matrix M_n with M_n(i,j) = n for i = j, M_n(i,j) = -1 for i = j+1 and i = j-1, M_n(i,j) = 0 otherwise.
The characteristic polynomial of M_n is (x-(n-1))*(x-n)*(x-(n+1))*(x^2-2*n*x+c) with c = n^2-3.
The characteristic polynomials are related to chromatic polynomials, cf. links. They have roots n+sqrt(3).
FORMULA
a(n) = 2*n + a(n-1) - 1. - Vincenzo Librandi, Nov 12 2010
G.f.: x*(-2+x)*(1-3*x)/(1-x)^3. - Colin Barker, Jan 29 2012
EXAMPLE
The quadratic factors of the characteristic polynomials of M_n for n = 1..6 are
x^2 - 2*x - 2,
x^2 - 4*x + 1,
x^2 - 6*x + 6,
x^2 - 8*x + 13,
x^2 - 10*x + 22,
x^2 - 12*x + 33.
MAPLE
with(combinat):seq(fibonacci(3, i)-4, i=1..55); # Zerinvary Lajos, Mar 20 2008
MATHEMATICA
M[n_] := {{n, -1, 0, 0, 0}, {-1, n, -1, 0, 0}, {0, -1, n, -1, 0}, {0, 0, -1, n, -1}, {0, 0, 0, -1, n}}; p[n_, x_] = Factor[CharacteristicPolynomial[M[n], x]] Table[ -3 + n^2, {n, 1, 25}]
PROG
(Magma) mat:=func< n | Matrix(IntegerRing(), 5, 5, [< i, j, i eq j select n else (i eq j+1 or i eq j-1) select -1 else 0 > : i, j in [1..5] ]) >; [ Coefficients(Factorization(CharacteristicPolynomial(mat(n)))[4][1])[1]:n in [1..50] ]; // Klaus Brockhaus, Nov 13 2010
(PARI) A123968(n) = n^2-3 /* or: */
(PARI) a(n)=polcoeff(factor(charpoly(matrix(5, 5, i, j, if(abs(i-j)>1, 0, if(i==j, n, -1)))))[4, 1], 0)
CROSSREFS
Essentially the same: A028872, A267874.
Sequence in context: A002562 A218492 A136456 * A282329 A343806 A372254
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
Edited and extended by Klaus Brockhaus, Nov 13 2010
Definition simplified by M. F. Hasler, Nov 12 2010
STATUS
approved