login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A123969 A triangular sequence from a Beraha type recursive polynomial using 5 X 5 n centered tridiagonal matrices with chromatic polynomial central roots to its characteristic polynomial. 0
-1, -1, 1, 0, 4, -6, -4, 11, -6, 1, 6, -41, 75, -60, 74, -119, 57, 64, -93, 47, -11, 1, 144, -492, 886, -1076, 489, 618, -1063, 1154, -1672, 1618, -410, -682, 785, -392, 108, -16, 1, 744, -2567, 3782, -1075, -6736, 18095, -29241, 29006, -12952, -3601, 11554, -18942, 24467, -17741, 2907, 6473, -6678, 3357, -1026 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Recursive polynomial type from a classic paper related to Tutte-Beraha constants and the four color graph/ topology problem.

REFERENCES

Limits of zeros of recursively defined polynomials, S. Beraha, J. Kahane and N. J. Weiss, Proc Natl Acad Sci U S A. 1975 November; 72(11): 4209.

LINKS

Table of n, a(n) for n=1..58.

FORMULA

M(n)={{n, -1, 0, 0, 0}, {-1, n, -1, 0, 0}, {0, -1, n, -1, 0}, {0, 0, -1, n, -1}, q(n,x)=CharacteristicPolynomial(M(n),x) p(k, x) = -Sum[q(n, x)*p(k - n, x), {n, 1, k - 1}]

EXAMPLE

Triangle begins:

{-1},

{-1, 1},

{0, 4, -6, -4, 11, -6, 1},

{6, -41,75, -60, 74, -119, 57, 64, -93, 47, -11, 1},

{144, -492, 886, -1076, 489, 618, -1063, 1154, -1672, 1618, -410, -682, 785, -392, 108, -16, 1}

MATHEMATICA

M[n_] := {{n, -1, 0, 0, 0}, {-1, n, -1, 0, 0}, {0, -1, n, -1, 0}, {0, 0, -1, n, -1}, {0, 0, 0, -1, n}}; q[n_, x_] = Factor[CharacteristicPolynomial[M[n], x]]; p[0, x] = -1; p[1, x] = x - 1; p[k_, x_] := p[k, x] = -Sum[q[n, x]*p[k - n, x], {n, 1, k - 1}]; Table[Expand[p[n, x]], {n, 0, 10}] w = Table[CoefficientList[p[n, x], x], {n, 0, 10}]; Flatten[w]

CROSSREFS

Sequence in context: A328722 A143521 A278363 * A255679 A019188 A019244

Adjacent sequences: A123966 A123967 A123968 * A123970 A123971 A123972

KEYWORD

uned,tabf,sign

AUTHOR

Gary W. Adamson and Roger L. Bagula, Oct 29 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 11:36 EST 2022. Contains 358693 sequences. (Running on oeis4.)