OFFSET
0,4
COMMENTS
a(n) is the determinant of the 3 X 3 matrix {{n,-1,0 },{-1,n,-1},{0,-1,n-1}}.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(n) = (n + 2*cos(2*Pi/7)) * (n + 2*cos(4*Pi/7)) * (n + 2*cos(6*Pi/7)). Cf. 3rd column from the left in the array of A162997. - Gary W. Adamson, Jul 23 2009
a(n) equals the lower right term in M^3, M is the 2 X 2 matrix {{1, n-2}, {1, n-1}}. - Gary W. Adamson, Jun 29 2011
Starting (1, 13, 41, ...) = the binomial transform of (1, 12, 16, 6). - Gary W. Adamson, Jun 29 2011
G.f.: (1 - 5*x + 11*x^2 - x^3)/(1-x)^4. - Colin Barker, Jan 29 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 27 2012
MAPLE
with(linalg): M:=n->matrix(3, 3, [n, -1, 0, -1, n, -1, 0, -1, n-1]): seq(det(M(n)), n=0..42);
MATHEMATICA
CoefficientList[Series[(1-5*x+11*x^2-x^3)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 27 2012 *)
PROG
(PARI) a(n)=n^3-n^2-2*n+1 \\ Charles R Greathouse IV, Jun 30 2011
(Magma) I:=[1, -1, 1, 13]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 27 2012
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Gary W. Adamson and Roger L. Bagula, Oct 30 2006
EXTENSIONS
Edited by N. J. A. Sloane, Nov 01 2006 and Nov 24 2006
STATUS
approved