login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305155
a(n) = 28*2^n - 15.
3
13, 41, 97, 209, 433, 881, 1777, 3569, 7153, 14321, 28657, 57329, 114673, 229361, 458737, 917489, 1834993, 3670001, 7340017, 14680049, 29360113, 58720241, 117440497, 234881009, 469762033, 939524081, 1879048177, 3758096369, 7516192753, 15032385521, 30064771057, 60129542129, 120259084273, 240518168561
OFFSET
0,1
COMMENTS
a(n) is the number of edges in the nanostar dendrimer G(n), defined pictorially in the Darafsheh et al. reference (see Fig. 1, where G(2) is shown).
REFERENCES
M. R. Darafsheh, M. H. Khalifeh, Calculation of the Wiener, Szeged, and PI indices of a certain nanostar dendrimer, Ars Comb., 100, 2011, 289-298.
FORMULA
From Colin Barker, May 28 2018: (Start)
G.f.: (13 + 2*x) / ((1 - x)*(1 - 2*x)).
a(n) = 3*a(n-1) - 2*a(n-2) for n>1.
(End)
MAPLE
seq(28*2^n-15, n = 0..40);
MATHEMATICA
28*2^Range[0, 40]-15 (* or *) LinearRecurrence[{3, -2}, {13, 41}, 40] (* Harvey P. Dale, Dec 02 2018 *)
PROG
(PARI) Vec((13 + 2*x) / ((1 - x)*(1 - 2*x)) + O(x^50)) \\ Colin Barker, May 28 2018
(GAP) List([0..40], n->28*2^n-15); # Muniru A Asiru, May 28 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 28 2018
STATUS
approved