login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305154
a(n) = 36*2^n + 9.
1
45, 81, 153, 297, 585, 1161, 2313, 4617, 9225, 18441, 36873, 73737, 147465, 294921, 589833, 1179657, 2359305, 4718601, 9437193, 18874377, 37748745, 75497481, 150994953, 301989897, 603979785, 1207959561, 2415919113, 4831838217, 9663676425, 19327352841, 38654705673, 77309411337, 154618822665, 309237645321
OFFSET
0,1
COMMENTS
a(n) is the second Zagreb index of the dendrimer D[n], defined pictorially in Fig. 1 of the Heydari et al. reference.
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of D[n] is M(D[n]; x, y) = 3*2^n*x*y^3 + 6*x^2*y^3 + 3*(2^n - 1)*x^3*y^3 (n>=0).
LINKS
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
A. Heydari and I. Gutman, On the terminal Wiener index of thorn graphs, Kragujevac J. Sci., 32, 2010, 57-64.
FORMULA
From Vincenzo Librandi, May 28 2018: (Start)
G.f.: 9*(5 - 6*x)/((1 - 2*x)*(1 - x)).
a(n) = 3*a(n-1) - 2*a(n-2). (End)
a(n) = 9*A000051(n+2). - R. J. Mathar, Jul 22 2022
MAPLE
seq(36*2^n + 9, n = 0..40);
MATHEMATICA
Table[36 2^n + 9, {n, 0, 33}] (* Vincenzo Librandi, May 28 2018 *)
LinearRecurrence[{3, -2}, {45, 81}, 40] (* Harvey P. Dale, Jan 08 2020 *)
PROG
(Magma) [36*2^n+9: n in [0..33]]; // Vincenzo Librandi, May 28 2018
CROSSREFS
Cf. A305153.
Sequence in context: A102578 A026060 A138171 * A280407 A063343 A043184
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 27 2018
STATUS
approved