Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Sep 08 2022 08:46:21
%S 45,81,153,297,585,1161,2313,4617,9225,18441,36873,73737,147465,
%T 294921,589833,1179657,2359305,4718601,9437193,18874377,37748745,
%U 75497481,150994953,301989897,603979785,1207959561,2415919113,4831838217,9663676425,19327352841,38654705673,77309411337,154618822665,309237645321
%N a(n) = 36*2^n + 9.
%C a(n) is the second Zagreb index of the dendrimer D[n], defined pictorially in Fig. 1 of the Heydari et al. reference.
%C The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
%C The M-polynomial of D[n] is M(D[n]; x, y) = 3*2^n*x*y^3 + 6*x^2*y^3 + 3*(2^n - 1)*x^3*y^3 (n>=0).
%H E. Deutsch and Sandi Klavzar, <a href="http://dx.doi.org/10.22052/ijmc.2015.10106">M-polynomial and degree-based topological indices</a>, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
%H A. Heydari and I. Gutman, <a href="http://www.pmf.kg.ac.rs/kjs/volumes/kjs32/kjs32heydarigutman57.pdf">On the terminal Wiener index of thorn graphs</a>, Kragujevac J. Sci., 32, 2010, 57-64.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2).
%F From _Vincenzo Librandi_, May 28 2018: (Start)
%F G.f.: 9*(5 - 6*x)/((1 - 2*x)*(1 - x)).
%F a(n) = 3*a(n-1) - 2*a(n-2). (End)
%F a(n) = 9*A000051(n+2). - _R. J. Mathar_, Jul 22 2022
%p seq(36*2^n + 9, n = 0..40);
%t Table[36 2^n + 9, {n, 0, 33}] (* _Vincenzo Librandi_, May 28 2018 *)
%t LinearRecurrence[{3,-2},{45,81},40] (* _Harvey P. Dale_, Jan 08 2020 *)
%o (Magma) [36*2^n+9: n in [0..33]]; // _Vincenzo Librandi_, May 28 2018
%Y Cf. A305153.
%K nonn,easy
%O 0,1
%A _Emeric Deutsch_, May 27 2018