login
A226264
Number of additive Z_2 Z_8 codes of a certain type (see Siap-Aydogdu for precise definition).
9
36, 84, 180, 372, 756, 1524, 3060, 6132, 12276, 24564, 49140, 98292, 196596, 393204, 786420, 1572852, 3145716, 6291444, 12582900, 25165812, 50331636, 100663284, 201326580, 402653172, 805306356, 1610612724, 3221225460, 6442450932, 12884901876, 25769803764
OFFSET
1,1
COMMENTS
N2×8(r+1, 2; r, 1, 1, 0) r>=1. (Siap-Aydogdu Table 1)
LINKS
I. Siap and I. Aydogdu, Counting The Generator Matrices of Z_2 Z_8 Codes, arXiv preprint arXiv:1303.6985 [math.CO], 2013.
FORMULA
Conjectures from Colin Barker, Jun 14 2017: (Start)
G.f.: 12*x*(3 - 2*x) / ((1 - x)*(1 - 2*x)).
a(n) = 12*(2^(1+n) - 1) for n>0.
a(n) = 3*a(n-1) - 2*a(n-2) for n>2.
(End)
MATHEMATICA
QP = QPochhammer;
a[n_] := 2(6(2^(n+3))^n QP[2^(-n-1), 2, n])/((2^(n+2))^n QP[2^-n, 2, n]);
Array[a, 30] (* Jean-François Alcover, Sep 01 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 02 2013
EXTENSIONS
Terms a(6) and beyond from Lars Blomberg, Jun 14 2017
STATUS
approved