login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226261
Denominators of mass formula for connected vacuum graphs on 2n nodes for a phi^3 field theory.
3
1, 24, 16, 1152, 128, 3072, 96, 688128, 4096, 7077888, 4096, 46137344, 24576, 436207616, 114688, 6442450944, 2097152, 876173328384, 9437184, 15668040695808, 8388608, 138538465099776, 1441792, 4855443348258816, 201326592, 1688849860263936, 872415232
OFFSET
0,2
LINKS
Carl. M. Bender and K. A. Milton, Continued fraction as a discrete nonlinear transform, arXiv:hep-th/9304052, 1993. See Eq. 15.
Carl. M. Bender and K. A. Milton, Continued fraction as a discrete nonlinear transform, Journal of Mathematical Physics 35, 1994, 364-367.
FORMULA
Let V(n) = (3*n - 1)!!/(3!^n*n!), and c(n) = V(2*n) - (1/n)*Sum_{j=0..n-1} j*c(j)*V(2*(n-j)), c(0) = 1. Then a(n) = denominator of c(n). - Franck Maminirina Ramaharo, Feb 04 2019
EXAMPLE
1, 5/24, 5/16, 1105/1152, 565/128, 82825/3072, 19675/96, 1282031525/688128, 80727925/4096, ...
PROG
(Maxima)
c_list : [1]$
V(n) := if n = 0 then 1 else (3*n - 1)!!/(3!^n*n!)$
c(n) := V(2*n) - 1/n*sum(j*c_list[j + 1]*V(2*(n - j)), j , 0 , n - 1)$
for i:1 thru 50 do c_list : append(c_list, [c(i)])$
map(denom, c_list); /* Franck Maminirina Ramaharo, Feb 04 2019 */
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Jun 02 2013
EXTENSIONS
More terms from Franck Maminirina Ramaharo, Feb 04 2019
STATUS
approved