login
A226261
Denominators of mass formula for connected vacuum graphs on 2n nodes for a phi^3 field theory.
3
1, 24, 16, 1152, 128, 3072, 96, 688128, 4096, 7077888, 4096, 46137344, 24576, 436207616, 114688, 6442450944, 2097152, 876173328384, 9437184, 15668040695808, 8388608, 138538465099776, 1441792, 4855443348258816, 201326592, 1688849860263936, 872415232
OFFSET
0,2
LINKS
Carl. M. Bender and K. A. Milton, Continued fraction as a discrete nonlinear transform, arXiv:hep-th/9304052, 1993. See Eq. 15.
Carl. M. Bender and K. A. Milton, Continued fraction as a discrete nonlinear transform, Journal of Mathematical Physics 35, 1994, 364-367.
FORMULA
Let V(n) = (3*n - 1)!!/(3!^n*n!), and c(n) = V(2*n) - (1/n)*Sum_{j=0..n-1} j*c(j)*V(2*(n-j)), c(0) = 1. Then a(n) = denominator of c(n). - Franck Maminirina Ramaharo, Feb 04 2019
EXAMPLE
1, 5/24, 5/16, 1105/1152, 565/128, 82825/3072, 19675/96, 1282031525/688128, 80727925/4096, ...
PROG
(Maxima)
c_list : [1]$
V(n) := if n = 0 then 1 else (3*n - 1)!!/(3!^n*n!)$
c(n) := V(2*n) - 1/n*sum(j*c_list[j + 1]*V(2*(n - j)), j , 0 , n - 1)$
for i:1 thru 50 do c_list : append(c_list, [c(i)])$
map(denom, c_list); /* Franck Maminirina Ramaharo, Feb 04 2019 */
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Jun 02 2013
EXTENSIONS
More terms from Franck Maminirina Ramaharo, Feb 04 2019
STATUS
approved