login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A028696
Expansion of (theta_3(z^4)^3 + theta_2(z^4)^3)^3.
1
1, 0, 0, 24, 18, 0, 192, 288, 144, 512, 1152, 1512, 672, 0, 3456, 4704, 2034, 4608, 8448, 10440, 4320, 0, 17856, 19872, 7392, 18432, 31104, 35616, 12672, 0, 51072, 58176, 22608, 47616, 80640, 87696, 34802
OFFSET
0,4
LINKS
MAPLE
G:= (JacobiTheta2(0, z^4)^3 + JacobiTheta3(0, z^4)^3)^3:
S:= series(G, z, 51):
seq(coeff(S, z, i), i=0..50); # Robert Israel, Jan 07 2025
MATHEMATICA
Normal[Series[(EllipticTheta[3, 0, z]^3 + EllipticTheta[2, 0, z]^3)^3, {z, 0, 9}]] /. z -> z^4 // Simplify[#, z > 0]& // CoefficientList[#, z]& (* Jean-François Alcover, Sep 29 2020 *)
CROSSREFS
Sequence in context: A033824 A040554 A226261 * A284874 A216841 A293782
KEYWORD
nonn,look
AUTHOR
EXTENSIONS
Name edited by Robert Israel, Jan 08 2025
STATUS
approved