login
A226258
Numerators of mass formula for connected vacuum graphs on n nodes for a phi^4 field theory.
1
1, 1, 1, 11, 17, 619, 709, 858437, 54193, 18639247, 2197187, 33152545703, 1169890097, 41657327595361, 31722037141, 6944870083473751, 10192167279257, 45494616421387671961, 37539803774446801, 249615310568664912892639, 19065529984707154577
OFFSET
0,4
LINKS
Carl M. Bender and Kimball A. Milton, Continued fraction as a discrete nonlinear transform, arXiv:hep-th/9304052, 1993. See Eq. 11.
Carl M. Bender and Kimball A. Milton, Continued fraction as a discrete nonlinear transform, Journal of Mathematical Physics 35, 1994, 364-367.
FORMULA
Let V(n) = (4*n - 1)!!/(4!^n*n!) = A225697(n)/A225698(n), and c(n) = V(n) - (1/n)*Sum_{j=0..n-1} j*c(j)*V(n-j), c(0) = 1. Then a(n) = numerator of c(n). - Franck Maminirina Ramaharo, Feb 04 2019
EXAMPLE
1, 1/8, 1/12, 11/96, 17/72, 619/960, 709/324, ...
PROG
(Maxima)
c_list : [1]$
V(n) := if n = 0 then 1 else (4*n - 1)!!/(4!^n*n!)$
c(n) := V(n) - 1/n*sum(j*c_list[j + 1]*V(n - j), j , 0 , n - 1)$
for i:1 thru 50 do c_list : append(c_list, [c(i)])$
map(num, c_list); /* Franck Maminirina Ramaharo, Feb 04 2019 */
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Jun 02 2013
EXTENSIONS
More terms from Franck Maminirina Ramaharo, Feb 04 2019
STATUS
approved