login
A132092
Numerators of Blandin-Diaz compositional Bernoulli numbers (B^sin)_3,n.
18
-1, -1, -11, -17, -563, -381, 55277, 242747, 406146379, 104180627, -398489682593, -169622229019, -6523856615663, -251077358513783, 35076901882951197, 2869253069531102351, 20717378005021857058651, 1335883610404565359777223, 27846976637614329871324177
OFFSET
0,3
COMMENTS
Denominators are A132093. Numerators and denominators given only for even n (odd n have numerators = 0).
REFERENCES
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199. See Table 3.3.
LINKS
Hector Blandin and Rafael Diaz, Compositional Bernoulli numbers, arXiv:0708.0809 [math.CO], 2007-2008, see p. 8.
FORMULA
((x^3)/3!)/(sin(x)-x) = Sum_{n>=0} (B^sin)_3,n ((x^n)/n!).
MAPLE
A132092 := proc(n) local g; g := taylor(sin(x)-x, x=0, n+7) ; g := taylor(g/x^3, x=0, n+4) ; g := taylor( 1/6/g, x=0, n+4) ; n!*coeftayl(g, x=0, n) ; numer(%) ; end: for n from 0 to 40 by 2 do printf("%d, ", A132092(n)) ; od: # R. J. Mathar, May 25 2008
MATHEMATICA
m = 20;
((x^3)/3!)/(Sin[x]-x) + O[x]^(2m) // CoefficientList[#, x]& // #*Range[0, 2m-2]!& // #[[;; ;; 2]]& // Numerator (* Jean-François Alcover, Mar 23 2020 *)
PROG
(PARI) my(N=40, x='x+O('x^N), v=apply(numerator, Vec(serlaplace(x^3/(6*(sin(x)-x)))))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, Jan 24 2024
CROSSREFS
Cf. A132093 (denominators), A132094-A132099.
Sequence in context: A286959 A146446 A228055 * A226258 A056705 A259744
KEYWORD
frac,sign
AUTHOR
Jonathan Vos Post, Aug 09 2007
EXTENSIONS
More terms from R. J. Mathar, May 25 2008
Offset corrected by Andrew Howroyd, Sep 22 2024
STATUS
approved