|
|
A132093
|
|
Denominators of Blandin-Diaz compositional Bernoulli numbers (B^sin)_3,n.
|
|
3
|
|
|
1, 10, 350, 1050, 57750, 250250, 2388750, 2231250, 1088106250, 137156250, 105761906250, 2289218750, 8842968750, 51289218750, 45049030468750, 3563716406250, 1099667378906250, 4714260332031250, 14142780996093750
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Numerators are A132092. Numerators and denominators given only for even n (odd n have numerators = 0).
|
|
REFERENCES
|
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199. See Table 3.3.
|
|
LINKS
|
Table of n, a(n) for n=1..19.
Hector Blandin and Rafael Diaz, Compositional Bernoulli numbers, p. 8, arXiv:0708.0809 [math.CO], 2007-2008.
|
|
FORMULA
|
(((x^3)/3!)/(sin(x)-x) = SUM[n=0..infinity] (B^sin)_3,n ((x^n)/n!).
|
|
EXAMPLE
|
-1, 0, -1/10, 0, -11/350, 0, -17,1050, 0, -563/57750, 0, -381/250250, 0.
|
|
MATHEMATICA
|
m = 20;
((x^3)/3!)/(Sin[x]-x) + O[x]^(2m) // CoefficientList[#, x]& // #*Range[0, 2m-2]!& // #[[;; ;; 2]]& // Denominator (* Jean-François Alcover, Mar 23 2020 *)
|
|
CROSSREFS
|
Cf. A132092-A132106.
Sequence in context: A171583 A060704 A220185 * A339411 A217507 A217508
Adjacent sequences: A132090 A132091 A132092 * A132094 A132095 A132096
|
|
KEYWORD
|
frac,nonn
|
|
AUTHOR
|
Jonathan Vos Post, Aug 09 2007
|
|
EXTENSIONS
|
More terms from R. J. Mathar, May 25 2008
|
|
STATUS
|
approved
|
|
|
|