login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123965
Triangle read by rows: T(0,0)=1; T(n,k) is the coefficient of x^k in the polynomial (-1)^n*p(n,x), where p(n,x) is the characteristic polynomial of the n X n tridiagonal matrix with 3's on the main diagonal and -1's on the super- and subdiagonal (n >= 1; 0 <= k <= n).
6
1, 3, -1, 8, -6, 1, 21, -25, 9, -1, 55, -90, 51, -12, 1, 144, -300, 234, -86, 15, -1, 377, -954, 951, -480, 130, -18, 1, 987, -2939, 3573, -2305, 855, -183, 21, -1, 2584, -8850, 12707, -10008, 4740, -1386, 245, -24, 1, 6765, -26195, 43398, -40426, 23373, -8715, 2100, -316, 27, -1
OFFSET
0,2
COMMENTS
Reversed polynomials = bisection of A152063: (1; 1,3; 1,6,8; 1,9,25,21; ...) having the following property: even-indexed Fibonacci numbers = Product_{k=1..n-2/2} (1 + 4*cos^2 k*Pi/n); n relating to regular polygons with an even number of edges. Example: The roots to x^3 - 9*x^2 + 25*x - 21 relate to the octagon and are such that the product with k=1,2,3 = (4.414213...)*(3)*(1.585786...) = 21. - Gary W. Adamson, Aug 15 2010
LINKS
J. Dombrowski, Tridiagonal matrix representations of cyclic self-adjoint operators, Pacif. J. Math. 114 (2): 324-334 (1984).
Eric Weisstein's World of Mathematics, Tridiagonal Matrix.
FORMULA
T(n, 0) = Fibonacci(2*n+2) = A001906(n+1).
Equals coefficients of the polynomials p(n,x) = (3-x)*p(n-1,x) - p(n-2,x), with p(0, x) = 1, p(1, x) = 3-x. - Roger L. Bagula, Oct 31 2006
From G. C. Greubel, Aug 20 2023: (Start)
T(n, k) = [x^k]( ChebyshevU(n, (3-x)/2) ).
Sum_{k=0..n} T(n, k) = n+1.
Sum_{k=0..n} (-1)^k*T(n, k) = A001353(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000225(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A000244(n). (End)
EXAMPLE
Polynomials p(n, x):
1,
3 - x,
8 - 6*x + x^2,
21 - 25*x + 9*x^2 - x^3,
55 - 90*x + 51*x^2 - 12*x^3 + x^4,
144 - 300*x + 234*x^2 - 86*x^3 + 15*x^4 - x^5,
377 - 954*x + 951*x^2 - 480*x^3 + 130*x^4 - 18*x^5 + x^6,
...
Triangle begins:
1;
3, -1;
8, -6, 1;
21, -25, 9, -1;
55, -90, 51, -12, 1;
144, -300, 234, -86, 15, -1;
377, -954, 951, -480, 130, -18, 1;
987, -2939, 3573, -2305, 855, -183, 21, -1;
2584, -8850, 12707, -10008, 4740, -1386, 245, -24, 1;
6765, -26195, 43398, -40426, 23373, -8715, 2100, -316, 27, -1;
...
MAPLE
with(linalg): a:=proc(i, j) if j=i then 3 elif abs(i-j)=1 then -1 else 0 fi end: for n from 1 to 10 do p[n]:=(-1)^n*charpoly(matrix(n, n, a), x) od: 1; for n from 1 to 10 do seq(coeff(p[n], x, j), j=0..n) od; # yields sequence in triangular form
MATHEMATICA
(* First program *)
T[n_, m_]:= If[n==m, 3, If[n==m-1 || n==m+1, -1, 0]];
M[d_]:= Table[T[n, m], {n, d}, {m, d}];
Table[M[d], {d, 10}];
Table[Det[M[d] - x*IdentityMatrix[d]], {d, 10}];
Join[{{3}}, Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]], x], {d, 10}]]//Flatten
(* Second program *)
Table[CoefficientList[ChebyshevU[n, (3-x)/2], x], {n, 0, 12}]//Flatten (* G. C. Greubel, Aug 20 2023 *)
PROG
(Magma)
m:=12;
p:= func< n, x | Evaluate(ChebyshevU(n+1), (3-x)/2) >;
R<x>:=PowerSeriesRing(Integers(), m+2);
A123965:= func< n, k | Coefficient(R!( p(n, x) ), k) >;
[A123965(n, k): k in [0..n], n in [0..m]]; // G. C. Greubel, Aug 20 2023
(SageMath)
def A123965(n, k): return ( chebyshev_U(n, (3-x)/2) ).series(x, n+2).list()[k]
flatten([[A123965(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 20 2023
CROSSREFS
Sequence in context: A103247 A030523 A207815 * A125662 A124025 A257488
KEYWORD
sign,tabl
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Nov 24 2006
STATUS
approved