login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A124025 Recursive polynomial from a tridiagonal matrix version of A123965: p(k, x) = ((x - b(k - 1))*p(k - 1, x) - a(k - 2) *p(k - 2, x))/a(n - 1); a(n)=-1;b(n)=3;. 1
1, 3, -1, 8, -6, 1, 21, -25, 9, -1, 55, -90, 51, -12, 1, 144, -300, 234, -86, 15, -1, 377, -954, 951, -480, 130, -18, 1, 987, -2939, 3573, -2305, 855, -183, 21, -1, 2584, -8850, 12707, -10008, 4740, -1386, 245, -24, 1, 6765, -26195, 43398, -40426, 23373, -8715, 2100, -316, 27, -1, 17711, -76500, 143682 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

Joanne Dombrowski, Tridiagonal matrix representations of cyclic selfadjoint operators, Pacific J. Math. 114, no. 2 (1984), 325-334

LINKS

Table of n, a(n) for n=1..58.

FORMULA

Recursive polynomial from a tridiagonal matrix version of A123965 ( first number different): p(k, x) = ((x - b(k - 1))*p(k - 1, x) - a(k - 2)*p(k - 2, x))/a(n - 1); a(n)=-1;b(n)=3;

MATHEMATICA

b[k_] = 3; a[k_] = -1; p[0, x] = 1; p[1, x] = (x - b[1])/a[1]; p[k_, x_] := p[k, x] = ((x - b[k - 1])*p[k - 1, x] - a[k - 2]*p[k - 2, x])/a[k - 1]; w = Table[CoefficientList[p[n, x], x], {n, 0, 10}]; Flatten[w]

CROSSREFS

Cf. A101950, A104562, A123965.

Sequence in context: A207815 A125662 A123965 * A257488 A286416 A005295

Adjacent sequences:  A124022 A124023 A124024 * A124026 A124027 A124028

KEYWORD

uned,sign

AUTHOR

Roger L. Bagula, Oct 31 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 20 08:01 EST 2020. Contains 332069 sequences. (Running on oeis4.)