login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124028
Center antidiagonal four in a tri-antidiagonal n-th Matrix generated triangular sequence: first element as 4==m[1,1,1].
0
4, 4, -1, -15, 2, 1, -56, 18, 4, -1, 209, -34, -33, 2, 1, 780, -259, -128, 36, 4, -1, -2911, 484, 738, -70, -51, 2, 1, -10864, 3620, 2824, -842, -200, 54, 4, -1, 40545, -6756, -14178, 1614, 1591, -106, -69, 2, 1, 151316, -50437, -53888, 16564, 6164, -1749, -272, 72, 4, -1, -564719, 94118, 251811, -31514, -39629
OFFSET
1,1
COMMENTS
These matrices and triangular sequences are machine generated: all we have done is invent the matrix form "tri-antidiagonal matrices" and get a way to compute it. Matrices: {{4}}, {{-1, 4}, {4, -1}}, {{0, -1, 4}, {-1, 4, -1}, {4, -1, 0}}, {{0, 0, -1, 4}, {0, -1, 4, -1}, {-1, 4, -1, 0}, {4, -1, 0, 0}}, {{0, 0, 0, -1, 4}, {0, 0, -1, 4, -1}, {0, -1, 4, -1, 0}, {-1, 4, -1, 0, 0}, {4, -1, 0, 0,0}}
FORMULA
m(n,m,d)=If[n + m - 1 == d, 4, If[n + m == d, -1, If[n + m - 2 == d, -1, 0]]]
EXAMPLE
Triangular sequence:
{4},
{4, -1},
{-15, 2, 1},
{-56, 18, 4, -1},
{209, -34, -33, 2, 1},
{780, -259, -128, 36, 4, -1},
{-2911, 484, 738, -70, -51, 2, 1},
{-10864, 3620, 2824, -842, -200, 54, 4, -1},
{40545, -6756, -14178, 1614, 1591, -106, -69, 2, 1}
MATHEMATICA
An[d_] := Table[If[n + m - 1 == d, 4, If[n + m == d, -1, If[n + m - 2 == d, -1, 0]]], {n, 1, d}, {m, 1, d}]; Join[An[1], Table[CoefficientList[CharacteristicPolynomial[An[d], x], x], {d, 1, 20}]]; Flatten[%]
CROSSREFS
Sequence in context: A140313 A102323 A145902 * A123966 A371898 A079507
KEYWORD
uned,sign
AUTHOR
STATUS
approved