login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124030
Binomial centered tridigonal matrices as a triangular sequence: t(n,m.d)=If[n + m - 1 == d, binomial[d - 1, n - 1], If[n + m == d, -1, If[n + m - 2 == d, -1, 0]]].
0
1, 1, -1, 0, -2, 1, 0, -3, 4, -1, 3, -14, 19, -8, 1, 48, -173, 204, -89, 16, -1, 1505, -4866, 5173, -2082, 381, -32, 1, 108780, -325990, 316978, -113481, 18926, -1580, 64, -1, 19072536, -53887686, 48428411, -15201276, 2206536, -164222, 6469, -128, 1, 8332293760, -22465873081, 18859204368, -5176293234
OFFSET
1,5
COMMENTS
These are pretty matrices in terms of symmetry. Matrices: 1 X 1 {{1}} 2 X 2 {{1, -1}, {-1, 1}} 3 X 3 {{1, -1, 0}, {-1, 2, -1}, {0, -1, 1}} 4 X 4 {{1, -1, 0, 0}, {-1, 3, -1, 0}, {0, -1, 3, -1}, {0, 0, -1, 1}} 5 X 5 {{1, -1, 0, 0, 0}, {-1, 4, -1, 0, 0}, {0, -1, 6, -1, 0}, {0, 0, -1, 4, -1}, {0, 0, 0, -1, 1}} 6 X 6 {{1, -1, 0, 0, 0, 0}, {-1, 5, -1, 0, 0, 0}, {0, -1, 10, -1, 0, 0}, {0, 0, -1, 10, -1, 0}, {0, 0, 0, -1, 5, -1}, {0, 0, 0, 0, -1, 1}}
FORMULA
t(n,m.d)=If[n + m - 1 == d, binomial[d - 1, n - 1], If[n + m == d, -1, If[n + m - 2 == d, -1, 0]]]
EXAMPLE
Triangular sequence:
{1},
{1, -1},
{0, 2, 1},
{0, 3, 2, -1},
{3, -4, -11, 2, 1},
{48, -13, -106, 21, 6, -1},
{-1505, 36, 2693, -58, -129, 2, 1},
{-108780, 5530, 171342, -8705, -5290, 268,20, -1}
MATHEMATICA
An[d_] := Table[If[n + m - 1 == d, Binomial[d - 1, n - 1], If[n + m ==d, -1, If[n + m - 2 == d, -1, 0]]], {n, 1, d}, {m, 1, d}]; Join[An[1], Table[CoefficientList[CharacteristicPolynomial[An[d], x], x], {d, 1, 20}]]; Flatten[%]
CROSSREFS
Sequence in context: A363154 A101603 A228161 * A166040 A106378 A094301
KEYWORD
uned,sign
AUTHOR
Roger L. Bagula, Nov 01 2006
STATUS
approved