OFFSET
1,5
COMMENTS
These are pretty matrices in terms of symmetry. Matrices: 1 X 1 {{1}} 2 X 2 {{1, -1}, {-1, 1}} 3 X 3 {{1, -1, 0}, {-1, 2, -1}, {0, -1, 1}} 4 X 4 {{1, -1, 0, 0}, {-1, 3, -1, 0}, {0, -1, 3, -1}, {0, 0, -1, 1}} 5 X 5 {{1, -1, 0, 0, 0}, {-1, 4, -1, 0, 0}, {0, -1, 6, -1, 0}, {0, 0, -1, 4, -1}, {0, 0, 0, -1, 1}} 6 X 6 {{1, -1, 0, 0, 0, 0}, {-1, 5, -1, 0, 0, 0}, {0, -1, 10, -1, 0, 0}, {0, 0, -1, 10, -1, 0}, {0, 0, 0, -1, 5, -1}, {0, 0, 0, 0, -1, 1}}
FORMULA
t(n,m.d)=If[n + m - 1 == d, binomial[d - 1, n - 1], If[n + m == d, -1, If[n + m - 2 == d, -1, 0]]]
EXAMPLE
Triangular sequence:
{1},
{1, -1},
{0, 2, 1},
{0, 3, 2, -1},
{3, -4, -11, 2, 1},
{48, -13, -106, 21, 6, -1},
{-1505, 36, 2693, -58, -129, 2, 1},
{-108780, 5530, 171342, -8705, -5290, 268,20, -1}
MATHEMATICA
An[d_] := Table[If[n + m - 1 == d, Binomial[d - 1, n - 1], If[n + m ==d, -1, If[n + m - 2 == d, -1, 0]]], {n, 1, d}, {m, 1, d}]; Join[An[1], Table[CoefficientList[CharacteristicPolynomial[An[d], x], x], {d, 1, 20}]]; Flatten[%]
CROSSREFS
KEYWORD
uned,sign
AUTHOR
Roger L. Bagula, Nov 01 2006
STATUS
approved