OFFSET
0,5
LINKS
Joanne Dombrowski, Tridiagonal matrix representations of cyclic selfadjoint operators, Pacific J. Math. 114, no. 2 (1984), 325-334.
EXAMPLE
Triangle begins:
{1},
{-1, -1},
{0, 2, 1},
{1, 3, -1, -1},
{-1, -6, -3, 2, 1},
{-2, -8, 4, 6, -1, -1},
{3, 16, 7, -12, -6, 2, 1},
{5, 21, -13, -25, 7, 9, -1, -1},
{-8, -42, -15, 50, 24, -18, -9, 2, 1},
{-13, -55, 40, 90, -33, -51, 10, 12, -1, -1},
{21, 110, 30, -180, -81, 102, 50, -24, -12, 2, 1}
MAPLE
p[0]:=1: p[1]:=-1-x: for n from 2 to 12 do p[n]:=sort(expand(((-1)^(n-1)-x)*p[n-1]-p[n-2])) od: T:=(n, k)->coeff(p[n], x, k): for n from 0 to 12 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
MATHEMATICA
b[k_] = (-1)^k; a[k_] = -1; p[0, x] = 1; p[1, x] = (x - b[1])/a[1]; p[k_, x_] :=p[k, x] = ((x - b[k - 1])*p[k - 1, x] - a[k - 2] *p[k - 2, x])/a[k - 1]; w = Table[CoefficientList[p[n, x], x], {n, 0, 10}]; Flatten[w]
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula and Gary W. Adamson, Nov 01 2006
EXTENSIONS
Edited by N. J. A. Sloane, Dec 02 2006
STATUS
approved