login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124035
Tridiagonal matrices of central ones with lower negative one to give a triangular sequence: first element is negative one. m(n,m,d)=If[ n == m && n < d && m < d, 1, If[n == m - 1 || n == m + 1, -1, If[n == m == d, -1, 0]].
0
-1, -1, -1, -2, 0, 1, -1, 3, 1, -1, 1, 4, -3, -2, 1, 2, 0, -8, 2, 3, -1, 1, -6, -5, 12, 0, -4, 1, -1, -7, 9, 15, -15, -3, 5, -1, -2, 0, 21, -6, -30, 16, 7, -6, 1, -1, 9, 12, -42, -9, 49, -14, -12, 7, -1, 1, 10, -18, -48, 63, 42, -70, 8, 18, -8, 1
OFFSET
1,4
COMMENTS
The 4 X 4 is a g(u,v) type of matrix where Minkowski is n(u,v)={1,1,1,-1}: single hyperbolic index. Matrices: 1 X 1 {{-1}} 2 X 2 {{1, -1}, {-1, -1}} 3 X 3 {{1, -1, 0}, {-1, 1, -1}, {0, -1, -1}} 4 X 4 {{1, -1, 0, 0}, {-1, 1, -1, 0}, {0, -1, 1, -1}, {0, 0, -1, -1}} 5 X 5 {{1, -1, 0, 0, 0}, {-1, 1, -1, 0, 0}, {0, -1, 1, -1, 0}, {0, 0, -1, 1, -1}, {0, 0, 0, -1, -1}
FORMULA
m(n,m,d)=If[ n == m && n < d && m < d, 1, If[n == m - 1 || n == m + 1, -1, If[n == m == d, -1, 0]]
EXAMPLE
Triangular sequence:
{{-1}},
{-1, -1},
{-2, 0, 1},
{-1, 3, 1, -1},
{1, 4, -3, -2,1},
{2, 0, -8, 2, 3, -1},
{1, -6, -5, 12, 0, -4, 1},
{-1, -7, 9, 15, -15, -3, 5, -1},
{-2, 0, 21, -6, -30, 16, 7, -6, 1},
MATHEMATICA
T[n_, m_, d_] := If[ n == m && n < d && m < d, 1, If[n == m - 1 || n == m + 1, -1, If[n == m == d, -1, 0]]] M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}] Table[M[d], {d, 1, 10}] Table[Det[M[d]], {d, 1, 10}] Table[Det[M[d] - x*IdentityMatrix[d]], {d, 1, 10}] a = Join[{M[1]}, Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]], x], { d, 1, 10}]] Flatten[a] MatrixForm[a]
CROSSREFS
Sequence in context: A321258 A331510 A319854 * A204184 A157897 A213910
KEYWORD
uned,sign,tabl
AUTHOR
Roger L. Bagula, Nov 02 2006
STATUS
approved