login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Tridiagonal matrices of central ones with lower negative one to give a triangular sequence: first element is negative one. m(n,m,d)=If[ n == m && n < d && m < d, 1, If[n == m - 1 || n == m + 1, -1, If[n == m == d, -1, 0]].
0

%I #10 Aug 26 2016 20:31:06

%S -1,-1,-1,-2,0,1,-1,3,1,-1,1,4,-3,-2,1,2,0,-8,2,3,-1,1,-6,-5,12,0,-4,

%T 1,-1,-7,9,15,-15,-3,5,-1,-2,0,21,-6,-30,16,7,-6,1,-1,9,12,-42,-9,49,

%U -14,-12,7,-1,1,10,-18,-48,63,42,-70,8,18,-8,1

%N Tridiagonal matrices of central ones with lower negative one to give a triangular sequence: first element is negative one. m(n,m,d)=If[ n == m && n < d && m < d, 1, If[n == m - 1 || n == m + 1, -1, If[n == m == d, -1, 0]].

%C The 4 X 4 is a g(u,v) type of matrix where Minkowski is n(u,v)={1,1,1,-1}: single hyperbolic index. Matrices: 1 X 1 {{-1}} 2 X 2 {{1, -1}, {-1, -1}} 3 X 3 {{1, -1, 0}, {-1, 1, -1}, {0, -1, -1}} 4 X 4 {{1, -1, 0, 0}, {-1, 1, -1, 0}, {0, -1, 1, -1}, {0, 0, -1, -1}} 5 X 5 {{1, -1, 0, 0, 0}, {-1, 1, -1, 0, 0}, {0, -1, 1, -1, 0}, {0, 0, -1, 1, -1}, {0, 0, 0, -1, -1}

%F m(n,m,d)=If[ n == m && n < d && m < d, 1, If[n == m - 1 || n == m + 1, -1, If[n == m == d, -1, 0]]

%e Triangular sequence:

%e {{-1}},

%e {-1, -1},

%e {-2, 0, 1},

%e {-1, 3, 1, -1},

%e {1, 4, -3, -2,1},

%e {2, 0, -8, 2, 3, -1},

%e {1, -6, -5, 12, 0, -4, 1},

%e {-1, -7, 9, 15, -15, -3, 5, -1},

%e {-2, 0, 21, -6, -30, 16, 7, -6, 1},

%t T[n_, m_, d_] := If[ n == m && n < d && m < d, 1, If[n == m - 1 || n == m + 1, -1, If[n == m == d, -1, 0]]] M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}] Table[M[d], {d, 1, 10}] Table[Det[M[d]], {d, 1, 10}] Table[Det[M[d] - x*IdentityMatrix[d]], {d, 1, 10}] a = Join[{M[1]}, Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]], x], { d, 1, 10}]] Flatten[a] MatrixForm[a]

%K uned,sign,tabl

%O 1,4

%A _Roger L. Bagula_, Nov 02 2006