login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A124038
Triangle read by rows: T(n, k) = T(n-1, k-1) - T(n-2, k), with T(n, n) = 1, T(n, n-1) = -2.
2
1, -2, 1, -1, -2, 1, 2, -2, -2, 1, 1, 4, -3, -2, 1, -2, 3, 6, -4, -2, 1, -1, -6, 6, 8, -5, -2, 1, 2, -4, -12, 10, 10, -6, -2, 1, 1, 8, -10, -20, 15, 12, -7, -2, 1, -2, 5, 20, -20, -30, 21, 14, -8, -2, 1, -1, -10, 15, 40, -35, -42, 28, 16, -9, -2, 1
OFFSET
0,2
FORMULA
From G. C. Greubel, Jan 22 2025: (Start)
T(n, k) = T(n-1, k-1) - T(n-2, k), with T(n, n) = 1, T(n, n-1) = -2.
T(n, k) = (-1)^floor((n-k+1)/2)*(1 + (n-k mod 2))*qStirling2(n+1, n-k+1,-1).
T(2*n, n) = (1/2)*(-1)^floor(n/2)*( (1+(-1)^n)*A005809(n/2) - 2*(1-(-1)^n)* A045721((n-1)/2) ). (End)
EXAMPLE
Triangular sequence begins as:
1;
-2, 1;
-1, -2, 1;
2, -2, -2, 1;
1, 4, -3, -2, 1;
-2, 3, 6, -4, -2, 1;
-1, -6, 6, 8, -5, -2, 1;
2, -4, -12, 10, 10, -6, -2, 1;
1, 8, -10, -20, 15, 12, -7, -2, 1;
-2, 5, 20, -20, -30, 21, 14, -8, -2, 1;
-1, -10, 15, 40, -35, -42, 28, 16, -9, -2, 1;
MATHEMATICA
(* First program *)
t[n_, m_, d_]:= If[n==m && n>1 && m>1, x, If[n==m-1 || n==m+1, -1, If[n==m== 1, x-2, 0]]];
M[d_]:= Table[t[n, m, d], {n, d}, {m, d}];
Join[{{1}}, Table[CoefficientList[Table[Det[M[d]], {d, 10}][[d]], x], {d, 10}]]//Flatten
(* Second program *)
T[n_, k_]:= T[n, k] = If[k<0 || k>n, 0, If[k>n-2, k-n+(-1)^(n-k), T[n-1, k- 1] -T[n-2, k]]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 22 2025 *)
PROG
(SageMath)
@CachedFunction
def A124038(n, k):
if n< 0: return 0
if n==0: return 1 if k == 0 else 0
h = 2*A124038(n-1, k) if n==1 else 0
return A124038(n-1, k-1) - A124038(n-2, k) - h
for n in (0..9): [A124038(n, k) for k in (0..n)] # Peter Luschny, Nov 20 2012
(SageMath)
from sage.combinat.q_analogues import q_stirling_number2
def A124038(n, k): return (1 + ((n-k)%2))*q_stirling_number2(n+1, n-k+1, -1)
print(flatten([[A124038(n, k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 22 2025
(Magma)
function T(n, k) // T = A124038
if k lt 0 or k gt n then return 0;
elif k ge n-2 then return k-n + (-1)^(n+k);
else return T(n-1, k-1) - T(n-2, k);
end if;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 22 2025
CROSSREFS
Row reversal of: A374439.
Columns are related to: A000034 (k=0), A029578 (k=1), A131259 (k=2).
Diagonals are related to: A113679 (k=n-1), A022958 (k=n-2), A005843 (k=n-3), A000217 (k=n-4), -A002378 (k=n-5).
Sums include: (-1)^floor((n+1)/2)*A016116 (signed diagonal), A057079 (row), A119910 (signed row), (-1)^n*A130706 (diagonal).
Sequence in context: A141272 A380560 A281527 * A378398 A029311 A217869
KEYWORD
sign,changed
AUTHOR
EXTENSIONS
Edited by G. C. Greubel, Jan 22 2025
STATUS
approved