login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124037
Triangle read by rows: row n gives coefficients of increasing powers of x in characteristic polynomial of the matrix (-1)^n*M_n, where M_n is the tridiagonal matrix defined in the Comments line.
4
1, 1, -1, 2, -4, 1, 5, -13, 7, -1, 13, -40, 33, -10, 1, 34, -120, 132, -62, 13, -1, 89, -354, 483, -308, 100, -16, 1, 233, -1031, 1671, -1345, 595, -147, 19, -1, 610, -2972, 5561, -5398, 3030, -1020, 203, -22, 1, 1597, -8495, 17984, -20410, 13893, -5943, 1610, -268, 25, -1, 4181, -24110, 56886, -73816, 59059
OFFSET
0,4
COMMENTS
The matrices M_n for n=1, 2, 3, ... are:
1 X 1 {{1}},
2 X 2 {{1, -1}, {-1, 3}},
3 X 3 {{1, -1, 0}, {-1, 3, -1}, {0, -1, 3}},
4 X 4 {{1, -1, 0, 0}, {-1, 3, -1, 0}, {0, -1, 3, -1}, {0, 0, -1, 3}},
5 X 5 {{1, -1, 0, 0, 0}, {-1, 3, -1, 0, 0}, {0, -1, 3, -1, 0}, {0, 0, -1, 3, -1}, {0, 0, 0, -1, 3}},
6 X 6 {{1, -1, 0, 0, 0, 0}, {-1, 3, -1, 0, 0, 0}, {0, -1, 3, -1, 0, 0}, {0, 0, -1, 3, -1, 0}, { 0, 0, 0, -1, 3, -1}, {0, 0, 0, 0, -1, 3}}, ...
Subtriangle of the triangle given by (0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 04 2014
Riordan array ((1-2*x)/(1-3*x+x^2), -x/(1-3*x+x^2)). - Philippe Deléham, Mar 04 2014
FORMULA
T(n,k) = 3*T(n-1,k) - T(n-1,k-1) - T(n-2,k), T(0,0) = 1, T(1,0) = 1, T(1,1) = -1, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 04 2014
G.f.: -(-1+2*x)/(1-3*x+x^2+x*y). - R. J. Mathar, Aug 11 2015
EXAMPLE
Triangle begins:
{1},
{1, -1},
{2, -4, 1},
{5, -13, 7, -1},
{13, -40, 33, -10, 1},
{34, -120,132, -62, 13, -1},
{89, -354, 483, -308, 100, -16, 1},
For example, the characteristic polynomial of M_3 is x^3-7*x^2+13*x-5, so row 3 is 5, -13, 7, -1.
Triangle (0, 1, 1, 1, 0, 0, 0, ...) DELTA (1, -2, 0, 0, 0, ...) begins:
1;
0, 1;
0, 1, -1;
0, 2, -4, 1;
0, 5, -13, 7, -1;
0, 13, -40, 33, -10, 1;
0, 34, -120, 132, -62, 13, -1;
0, 89, -354, 483, -308, 100, -16, 1; - Philippe Deléham, Mar 04 2014
MATHEMATICA
T[n_, m_, d_] := If[ n == m && n > 1 && m > 1, 3, If[n == m - 1 || n == m + 1, -1, If[n == m == 1, 1, 0]]] M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}] Table[M[d], {d, 1, 10}] Table[Det[M[d]], {d, 1, 10}] Table[Det[M[d] - x*IdentityMatrix[d]], {d, 1, 10}] a = Join[{M[1]}, Table[CoefficientList[Det[M[d] - x*IdentityMatrix[ d]], x], {d, 1, 10}]] Flatten[a] MatrixForm[a]
PROG
(Sage)
@CachedFunction
def T(n, k):
if n< 0: return 0
if n==0: return 1 if k == 0 else 0
h = T(n-1, k) if n==1 else 3*T(n-1, k)
return T(n-1, k-1) - T(n-2, k) - h
A124037 = lambda n, k: (-1)^n*T(n, k)
for n in (0..9): [A124037(n, k) for k in (0..n)] # Peter Luschny, Nov 20 2012
CROSSREFS
Cf. A126126.
Sequence in context: A379572 A181336 A238731 * A126126 A090285 A286784
KEYWORD
sign,tabl
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Mar 02 2008
STATUS
approved