OFFSET
0,4
COMMENTS
The matrix inverse starts
1;
-1, 1;
2, -4, 1;
-4, 13, -7, 1;
8, -38, 33, -10, 1;
-16, 104, -129, 62, -13, 1;
32, -272, 450, -304, 100, -16, 1;
-64, 688, -1452, 1289, -590, 147, -19, 1;
128, -1696, 4424, -4942, 2945, -1014, 203, -22, 1;
- R. J. Mathar, Mar 15 2013
Riordan array (c(x), x*c(x)^2/(1-x*c(x)^2)) where c(x) is the g.f. for the Catalan numbers (A000108). - Philippe Deléham, Jun 02 2013
The matrix inverse is the Riordan array ((1+x)/(1+2*x), x*(1+x)/(1+2*x)^2). - Philippe Deléham, Jan 26 2014
LINKS
Pudwell, Lara; Scholten, Connor; Schrock, Tyler; Serrato, Alexa Noncontiguous pattern containment in binary trees, ISRN Comb. 2014, Article ID 316535, 8 p. (2014), Table 1.
Efrat Engel Shaposhnik, Antichains of Interval Orders and Semiorders, and Dilworth Lattices of maximum size Antichains, Massachusetts Institute of Technology, June 2016.
FORMULA
MAPLE
A090285 := proc(n, k)
if k < 0 or k > n then
0 ;
elif k = 0 then
A000108(n)
else
add(procname(n-1-j, k-1)*binomial(2*j+1, j+1), j=0..n-1) ;
end if;
end proc: # R. J. Mathar, Mar 15 2013
MATHEMATICA
T[n_, k_] := T[n, k] = If[k == 0, CatalanNumber@ n, Sum[T[(n - 1) - j, k - 1] Binomial[2 j + 1, j + 1], {j, 0, n - 1}]]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jun 26 2017 *)
CROSSREFS
KEYWORD
AUTHOR
Philippe Deléham, Jan 24 2004
STATUS
approved