login
A126126
Triangle read by rows: matrix inverse of A110877.
4
1, -1, 1, 2, -4, 1, -5, 13, -7, 1, 13, -40, 33, -10, 1, -34, 120, -132, 62, -13, 1, 89, -354, 483, -308, 100, -16, 1, -233, 1031, -1671, 1345, -595, 147, -19, 1, 610, -2972, 5561, -5398, 3030, -1020, 203, -22, 1, -1597, 8495, -17984, 20410, -13893, 5943, -1610, 268, -25, 1, 4181, -24110, 56886, -73816, 59059, -30702, 10570, -2392, 342, -28, 1
OFFSET
0,4
COMMENTS
A110877 can be generated from M^n * [1,0,0,0...] where M = an infinite tridiagonal matrix with 1's in the super and subdiagonals and (1,3,3,3...) in the main diagonal.
Up to signs the same as A124037. - R. J. Mathar, Sep 06 2013
Riordan array ((1+2*x)/(1+3*x+x^2), x/(1+3*x+x^2)). - Philippe Deléham, Mar 04 2014
FORMULA
Sum_{j=k..n} T(n,j)*A110877(j,k) = delta(n,k).
EXAMPLE
First few rows of the triangle are:
1;
-1, 1;
2, -4, 1;
-5, 13, -7, 1;
13, -40, 33, -10, 1;
-34, 120, -132, 62, -13, 1
...
CROSSREFS
Cf. A110877.
Sequence in context: A181336 A238731 A124037 * A090285 A286784 A047908
KEYWORD
tabl,sign
AUTHOR
Gary W. Adamson, Dec 17 2006
EXTENSIONS
Corrected by R. J. Mathar, Sep 06 2013
STATUS
approved